Home
Class 12
MATHS
Given that int (dx)/((1+ x ^(2))^n)=(x)/...

Given that `int (dx)/((1+ x ^(2))^n)=(x)/(2 (n-1)(1+x^(2) )^(n-1))+((2n -3))/(2(n-1))int (dx)/((1+ x ^(2))^(n-1)).` Find the vlaue of `int _(0)^(1) (dx)/((1+x ^(2) )^(4)),` (you may or may not use reduction formula given)

A

1: `11/48+(5pi)/(64)`

B

2: `(11)/(48)+ (5pi)/(32)`

C

3: `(1)/(24) + (5pi)/(64)`

D

4: `(1)/(96) + (5pi)/(32)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_0^1 \frac{dx}{(1+x^2)^4} \) using the provided formula, we will follow these steps: ### Step 1: Identify the parameters We are given the formula: \[ \int \frac{dx}{(1+x^2)^n} = \frac{x}{2(n-1)(1+x^2)^{n-1}} + \frac{2n-3}{2(n-1)} \int \frac{dx}{(1+x^2)^{n-1}} \] For our case, we set \( n = 4 \). ### Step 2: Apply the formula Substituting \( n = 4 \) into the formula: \[ \int \frac{dx}{(1+x^2)^4} = \frac{x}{2(4-1)(1+x^2)^{3}} + \frac{2(4)-3}{2(4-1)} \int \frac{dx}{(1+x^2)^{3}} \] This simplifies to: \[ \int \frac{dx}{(1+x^2)^4} = \frac{x}{6(1+x^2)^{3}} + \frac{5}{6} \int \frac{dx}{(1+x^2)^{3}} \] ### Step 3: Evaluate the integral \( \int \frac{dx}{(1+x^2)^3} \) We apply the formula again for \( n = 3 \): \[ \int \frac{dx}{(1+x^2)^3} = \frac{x}{2(3-1)(1+x^2)^{2}} + \frac{2(3)-3}{2(3-1)} \int \frac{dx}{(1+x^2)^{2}} \] This simplifies to: \[ \int \frac{dx}{(1+x^2)^3} = \frac{x}{4(1+x^2)^{2}} + \frac{3}{4} \int \frac{dx}{(1+x^2)^{2}} \] ### Step 4: Evaluate the integral \( \int \frac{dx}{(1+x^2)^2} \) We apply the formula again for \( n = 2 \): \[ \int \frac{dx}{(1+x^2)^2} = \frac{x}{2(2-1)(1+x^2)^{1}} + \frac{2(2)-3}{2(2-1)} \int \frac{dx}{(1+x^2)^{1}} \] This simplifies to: \[ \int \frac{dx}{(1+x^2)^2} = \frac{x}{2(1+x^2)} + \frac{1}{2} \int \frac{dx}{(1+x^2)} \] ### Step 5: Evaluate the integral \( \int \frac{dx}{(1+x^2)} \) This integral is known: \[ \int \frac{dx}{(1+x^2)} = \tan^{-1}(x) \] ### Step 6: Substitute back Now we can substitute back into our previous integrals: 1. For \( \int \frac{dx}{(1+x^2)^2} \): \[ \int \frac{dx}{(1+x^2)^2} = \frac{x}{2(1+x^2)} + \frac{1}{2} \tan^{-1}(x) \] 2. For \( \int \frac{dx}{(1+x^2)^3} \): \[ \int \frac{dx}{(1+x^2)^3} = \frac{x}{4(1+x^2)^{2}} + \frac{3}{4} \left( \frac{x}{2(1+x^2)} + \frac{1}{2} \tan^{-1}(x) \right) \] 3. For \( \int \frac{dx}{(1+x^2)^4} \): \[ \int \frac{dx}{(1+x^2)^4} = \frac{x}{6(1+x^2)^{3}} + \frac{5}{6} \left( \frac{x}{4(1+x^2)^{2}} + \frac{3}{4} \left( \frac{x}{2(1+x^2)} + \frac{1}{2} \tan^{-1}(x) \right) \right) \] ### Step 7: Evaluate from 0 to 1 Now we need to evaluate: \[ \int_0^1 \frac{dx}{(1+x^2)^4} \] Substituting the limits into the expression we derived for \( \int \frac{dx}{(1+x^2)^4} \). ### Step 8: Final Calculation After substituting \( x = 1 \) and \( x = 0 \) into the final expression and simplifying, we will arrive at the final answer.
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_(0)^(1)x(1-x)^(n)dx

If n gt 1 . Evaluate int_(0)^(oo)(dx)/((x+sqrt(1+x^(2)))^(n))

Evaluate: int_0^1x(1-x)^n dx

The value of the integral int_(0)^(1) x(1-x)^(n)dx is -

11. int_(1)^(2)dx/(x.(x^n+1))

If int (x+sqrt(1+x^(2)))^(n)dx . =(1)/(a(n+1)){x+sqrt(1+x^(2))}^(n+1)+(1)/(-b(n-1)){x+sqrt(1+x^(2))}^(n-1)+C Then (a+b) is equal to

Prove that int_(0)^(1)(dx)/(1+x^(n))gt1-(1)/(n)"for n"inN

int(x+(1)/(x))^(n+5).((x^(2)-1)/(x^(2)))dx is equal to

Evaluate int_(0)^(1)((log(1/x))^(n-1)dx .

Integrate int((x^(2n)-x^(2n-3)))/((2x^(3)+1)^(n))dx .

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Given that int (dx)/((1+ x ^(2))^n)=(x)/(2 (n-1)(1+x^(2) )^(n-1))+((2n...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |