Home
Class 12
MATHS
Find the value of int ( 0) ^(pi//4) (sin...

Find the value of `int _( 0) ^(pi//4) (sin x) ^(4)` dx :

A

`(3pi)/(16)`

B

`(3pi)/(32) -1/4`

C

`(3pi)/(32)-3/4`

D

`(3pi)/(16)-7/8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\frac{\pi}{4}} (\sin x)^4 \, dx \), we can follow these steps: ### Step 1: Rewrite \( \sin^4 x \) Using the identity for \( \sin^2 x \): \[ \sin^2 x = \frac{1 - \cos(2x)}{2} \] we can express \( \sin^4 x \) as: \[ \sin^4 x = (\sin^2 x)^2 = \left(\frac{1 - \cos(2x)}{2}\right)^2 = \frac{(1 - \cos(2x))^2}{4} \] ### Step 2: Expand the expression Now, we expand \( (1 - \cos(2x))^2 \): \[ (1 - \cos(2x))^2 = 1 - 2\cos(2x) + \cos^2(2x) \] Using the identity \( \cos^2(2x) = \frac{1 + \cos(4x)}{2} \), we can rewrite it as: \[ 1 - 2\cos(2x) + \frac{1 + \cos(4x)}{2} = 1 - 2\cos(2x) + \frac{1}{2} + \frac{\cos(4x)}{2} \] Combining the terms gives: \[ \frac{3}{2} - 2\cos(2x) + \frac{\cos(4x)}{2} \] ### Step 3: Substitute back into the integral Now substituting back into the integral: \[ \int_{0}^{\frac{\pi}{4}} \sin^4 x \, dx = \int_{0}^{\frac{\pi}{4}} \frac{1}{4} \left( \frac{3}{2} - 2\cos(2x) + \frac{\cos(4x)}{2} \right) \, dx \] This simplifies to: \[ \frac{1}{4} \int_{0}^{\frac{\pi}{4}} \left( \frac{3}{2} - 2\cos(2x) + \frac{\cos(4x)}{2} \right) \, dx \] ### Step 4: Integrate term by term Now we can integrate each term separately: 1. \( \int_{0}^{\frac{\pi}{4}} \frac{3}{2} \, dx = \frac{3}{2} \cdot \frac{\pi}{4} = \frac{3\pi}{8} \) 2. \( \int_{0}^{\frac{\pi}{4}} -2\cos(2x) \, dx = -2 \cdot \frac{\sin(2x)}{2} \bigg|_{0}^{\frac{\pi}{4}} = -\sin\left(\frac{\pi}{2}\right) + \sin(0) = -1 + 0 = -1 \) 3. \( \int_{0}^{\frac{\pi}{4}} \frac{\cos(4x)}{2} \, dx = \frac{1}{2} \cdot \frac{\sin(4x)}{4} \bigg|_{0}^{\frac{\pi}{4}} = \frac{1}{8}(\sin(\pi) - \sin(0)) = 0 \) ### Step 5: Combine the results Now, combining these results: \[ \int_{0}^{\frac{\pi}{4}} \sin^4 x \, dx = \frac{1}{4} \left( \frac{3\pi}{8} - 1 + 0 \right) = \frac{1}{4} \left( \frac{3\pi}{8} - 1 \right) \] ### Final Result Thus, the value of the integral is: \[ \int_{0}^{\frac{\pi}{4}} \sin^4 x \, dx = \frac{3\pi}{32} - \frac{1}{4} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi/4) sin 2x dx

Evaluate : int_(0)^(pi//2) sin x dx

Evaluate : int _(0)^(pi//4) sin 2x sin 3 x dx

Find the value of int_(0)^(100pi)sin^(-1)(sin x)dx .

int_(0)^(pi//2) sin ^(4) x dx

int_(0)^(pi//4) sin ^(2) x dx

Find the value of int_(0)^(2pi)1/(1+tan^(4)x)dx

Evaluate int _(0)^(pi//2) sin^(4) x. cos^(6) x dx .

Evaluate: int_(0)^(pi) xlog (sin x) dx

The value of int_(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx is

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Find the value of int ( 0) ^(pi//4) (sin x) ^(4) dx :

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |