Home
Class 12
MATHS
int (cos 9x +cos 6x )/( 2 cos 5x-1)dx =A...

`int (cos 9x +cos 6x )/( 2 cos 5x-1)dx =A sin 4x +B sin+C,` then `A+B` is equal to:
(Where C is constant of integration)

A

`1/2`

B

`3/4`

C

`2`

D

`5/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{\cos 9x + \cos 6x}{2 \cos 5x - 1} \, dx, \] we will follow these steps: ### Step 1: Rewrite the Integral First, we rewrite the integral by multiplying and dividing the numerator and denominator by \(\sin 5x\): \[ I = \int \frac{\sin 5x (\cos 9x + \cos 6x)}{\sin 5x (2 \cos 5x - 1)} \, dx. \] ### Step 2: Simplify the Denominator The denominator simplifies as follows: \[ \sin 5x (2 \cos 5x - 1) = 2 \sin 5x \cos 5x - \sin 5x = \sin 10x - \sin 5x. \] ### Step 3: Apply Trigonometric Identities Next, we apply the identity for the sum of cosines: \[ \cos a + \cos b = 2 \cos\left(\frac{a+b}{2}\right) \cos\left(\frac{a-b}{2}\right). \] For \(a = 9x\) and \(b = 6x\): \[ \cos 9x + \cos 6x = 2 \cos\left(\frac{15x}{2}\right) \cos\left(\frac{3x}{2}\right). \] ### Step 4: Substitute Back into the Integral Substituting this back into the integral gives: \[ I = \int \frac{2 \sin 5x \cos\left(\frac{15x}{2}\right) \cos\left(\frac{3x}{2}\right)}{\sin 10x - \sin 5x} \, dx. \] ### Step 5: Simplify Further Using the identity for the difference of sines: \[ \sin a - \sin b = 2 \sin\left(\frac{a-b}{2}\right) \cos\left(\frac{a+b}{2}\right), \] we can rewrite the denominator: \[ \sin 10x - \sin 5x = 2 \sin\left(\frac{5x}{2}\right) \cos\left(\frac{15x}{2}\right). \] ### Step 6: Cancel Common Terms Now, we can cancel \(\cos\left(\frac{15x}{2}\right)\) from the numerator and denominator: \[ I = \int \frac{2 \sin 5x \cos\left(\frac{3x}{2}\right)}{2 \sin\left(\frac{5x}{2}\right)} \, dx. \] ### Step 7: Further Simplification This simplifies to: \[ I = \int \frac{\sin 5x \cos\left(\frac{3x}{2}\right)}{\sin\left(\frac{5x}{2}\right)} \, dx. \] ### Step 8: Use Trigonometric Identities Again Using the identity \(2 \sin A \cos B = \sin(A + B) + \sin(A - B)\): \[ \sin 5x = 2 \sin\left(\frac{5x}{2}\right) \cos\left(\frac{5x}{2}\right), \] we can rewrite the integral as: \[ I = \int \cos\left(\frac{3x}{2}\right) \, dx. \] ### Step 9: Integrate The integral of \(\cos\left(\frac{3x}{2}\right)\) is: \[ \int \cos\left(\frac{3x}{2}\right) \, dx = \frac{2}{3} \sin\left(\frac{3x}{2}\right) + C. \] ### Step 10: Compare with Given Form Now, we compare this result with the form \(A \sin 4x + B \sin x + C\). Since we have: \[ I = \frac{2}{3} \sin\left(\frac{3x}{2}\right) + C, \] we can see that \(A = 0\) and \(B = \frac{2}{3}\). ### Final Calculation Thus, \(A + B = 0 + \frac{2}{3} = \frac{2}{3}\). ### Conclusion The value of \(A + B\) is: \[ \boxed{\frac{2}{3}}. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

Let I=int(cos^(3)x)/(1+sin^(2)x)dx , then I is equal to (where c is the constant of integration )

int("sin"(5x)/(3))/("sin"(x)/(2))dx is equal to (where, C is a constant of integration)

int("sin"(5x)/(3))/("sin"(x)/(2))dx is equal to (where, C is a constant of integration)

The value of int(ln(cotx))/(sin2x)dx is equal to (where, C is the constant of integration)

int( x + sin x )/( 1+ cos x) dx is equal to

The value of int((x-4))/(x^2sqrt(x-2)) dx is equal to (where , C is the constant of integration )

If int (2x + 5 )/(sqrt(7 - 6 x - x ^ 2 )) dx = A sqrt (7 - 6x - x ^ 2 ) + B sin ^ ( -1) (( x + 3 )/( 4 ) ) + C (Where C is a constant of integration), then the ordered pair (A, B) is equal to :

If int(cos 6x+cos 9x)/(1-2 cos 5x)dx=-(sin 4x)/(k)-sin x+C , then the value of k is .......... .

If int sin 3x cos 5x dx=0 when x=0 , then the value of constant of integration

int ( sin^(4) x - cos ^(4) x ) dx is equal to

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. int (cos 9x +cos 6x )/( 2 cos 5x-1)dx =A sin 4x +B sin+C, then A+B is ...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |