Home
Class 12
MATHS
If int (0)^(1) e ^(-x ^(2)) dx =a, then ...

If `int _(0)^(1) e ^(-x ^(2)) dx =a,` then `int _(0)^(1) x ^(2)e ^(-x ^(2))` dx is equal to

A

1: `(1)/(2e) (e-1)`

B

2: `(1)/(2e) (ea +1)`

C

3: `1/e (e -1)`

D

4: `1/e (e +1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_0^1 x^2 e^{-x^2} \, dx \) given that \( \int_0^1 e^{-x^2} \, dx = a \), we can use a substitution method. Here’s a step-by-step solution: ### Step 1: Substitution Let \( u = -x^2 \). Then, differentiating both sides gives: \[ du = -2x \, dx \quad \Rightarrow \quad dx = \frac{du}{-2x} \] ### Step 2: Change of Limits When \( x = 0 \), \( u = 0 \). When \( x = 1 \), \( u = -1 \). Thus, the limits of integration change from \( x: 0 \to 1 \) to \( u: 0 \to -1 \). ### Step 3: Rewrite the Integral Now, substituting into the integral: \[ \int_0^1 x^2 e^{-x^2} \, dx = \int_0^{-1} x^2 e^{u} \left( \frac{du}{-2x} \right) \] Notice that \( x^2 = -u \) (since \( u = -x^2 \)). Therefore, we can rewrite the integral: \[ = \int_0^{-1} (-u) e^{u} \left( \frac{du}{-2\sqrt{-u}} \right) \] However, we need to express \( x \) in terms of \( u \). Since \( u = -x^2 \), we have \( x = \sqrt{-u} \): \[ = \int_0^{-1} \frac{u e^{u}}{-2\sqrt{-u}} \, du \] ### Step 4: Simplifying the Integral We can factor out the constants: \[ = -\frac{1}{2} \int_0^{-1} u e^{u} \frac{du}{\sqrt{-u}} \] This integral is more complex, so we will revert to the original integral and use integration by parts instead. ### Step 5: Integration by Parts Let \( v = e^{-x^2} \) and \( dv = -2x e^{-x^2} \, dx \). Then, we can write: \[ \int_0^1 x^2 e^{-x^2} \, dx = -\frac{1}{2} \int_0^1 e^{-x^2} \, d(x^2) \] ### Step 6: Evaluating the Integral Using the given information \( \int_0^1 e^{-x^2} \, dx = a \): \[ = -\frac{1}{2} \left[ e^{-x^2} \right]_0^1 = -\frac{1}{2} \left( e^{-1} - e^{0} \right) \] \[ = -\frac{1}{2} \left( \frac{1}{e} - 1 \right) = \frac{1}{2} \left( 1 - \frac{1}{e} \right) \] ### Final Result Thus, the value of the integral \( \int_0^1 x^2 e^{-x^2} \, dx \) is: \[ \frac{1}{2} \left( 1 - \frac{1}{e} \right) \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

If int _(0)^(1) e ^(-x ^(2)) dx =0, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

int_(0)^(1)x e^(x^(2)) dx

int_(0)^(2) e^(x) dx

If int_(0)^(1) (e^(x))/( 1+x) dx = k , then int_(0)^(1) (e^(x))/( (1+x)^(2)) dx is equal to

int_(0)^(1) ( dx)/( e^(x) + e^(-x)) is equal to

int_(0)^(1) ( dx)/( e^(x) + e^(-x)) is equal to

If I=int_(0)^(1) (1+e^(-x^2)) dx then, s

int_(0)^(2)e^(x)\ dx

int_(0)^(1)e^(2x)e^(e^(x) dx =)

int_(0)^(1) (dx)/(e^(x)+e^(-x))

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If int (0)^(1) e ^(-x ^(2)) dx =a, then int (0)^(1) x ^(2)e ^(-x ^(2))...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |