Home
Class 12
MATHS
f(x) is a continuous function for all re...

`f(x)` is a continuous function for all real values of `x` and satisfies `int_n^(n+1)f(x)dx=(n^2)/2AAn in Idot` Then `int_(-3)^5f(|x|)dx` is equal to `(19)/2` (b) `(35)/2` (c) `(17)/2` (d) none of these

A

`19/2`

B

`35/2`

C

`17/2`

D

`37/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( \int_{-3}^{5} f(|x|) \, dx \) given that \( \int_{n}^{n+1} f(x) \, dx = \frac{n^2}{2} \) for integer values of \( n \). ### Step-by-Step Solution 1. **Break Down the Integral**: We can express the integral \( \int_{-3}^{5} f(|x|) \, dx \) as: \[ \int_{-3}^{5} f(|x|) \, dx = \int_{-3}^{0} f(-x) \, dx + \int_{0}^{5} f(x) \, dx \] 2. **Change of Variables for the First Integral**: For the first integral \( \int_{-3}^{0} f(-x) \, dx \), we can use the substitution \( t = -x \). Thus, when \( x = -3 \), \( t = 3 \) and when \( x = 0 \), \( t = 0 \). The differential changes as \( dx = -dt \): \[ \int_{-3}^{0} f(-x) \, dx = \int_{3}^{0} f(t) (-dt) = \int_{0}^{3} f(t) \, dt \] 3. **Combine the Integrals**: Now we can rewrite our original integral: \[ \int_{-3}^{5} f(|x|) \, dx = \int_{0}^{3} f(x) \, dx + \int_{0}^{5} f(x) \, dx \] This can be simplified to: \[ = \int_{0}^{3} f(x) \, dx + \int_{3}^{5} f(x) \, dx \] 4. **Split the Integral**: We can further split the integral: \[ = \int_{0}^{3} f(x) \, dx + \int_{3}^{4} f(x) \, dx + \int_{4}^{5} f(x) \, dx \] 5. **Apply the Given Property**: We know from the problem statement that: \[ \int_{n}^{n+1} f(x) \, dx = \frac{n^2}{2} \] Therefore, we can calculate: - For \( n = 0 \): \[ \int_{0}^{1} f(x) \, dx = \frac{0^2}{2} = 0 \] - For \( n = 1 \): \[ \int_{1}^{2} f(x) \, dx = \frac{1^2}{2} = \frac{1}{2} \] - For \( n = 2 \): \[ \int_{2}^{3} f(x) \, dx = \frac{2^2}{2} = 2 \] - For \( n = 3 \): \[ \int_{3}^{4} f(x) \, dx = \frac{3^2}{2} = \frac{9}{2} \] - For \( n = 4 \): \[ \int_{4}^{5} f(x) \, dx = \frac{4^2}{2} = 8 \] 6. **Sum the Integrals**: Now we can sum these results: \[ \int_{0}^{3} f(x) \, dx = 0 + \frac{1}{2} + 2 = \frac{5}{2} \] \[ \int_{3}^{5} f(x) \, dx = \frac{9}{2} + 8 = \frac{9}{2} + \frac{16}{2} = \frac{25}{2} \] 7. **Final Calculation**: Therefore, the total integral is: \[ \int_{-3}^{5} f(|x|) \, dx = \frac{5}{2} + \frac{25}{2} = \frac{30}{2} = 15 \] ### Conclusion The value of \( \int_{-3}^{5} f(|x|) \, dx \) is \( 15 \).
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

f(x) is a continuous function for all real values of x and satisfies int_n^(n+1)f(x)dx=(n^2)/2AAn in Idot Then int_(-3)^5f(|x|)dx is equal to (a) (19)/2 (b) (35)/2 (c) (17)/2 (d) none of these

int_n^(n+1)f(x) dx=n^2+n then int_(-1)^1 f(x) dx =

If int_0^af(2a-x)dx=m and int_0^af(x)dx=n, then int_0^(2a) f(x) dx is equal to

Let f: R rarr R be a continuous function given by f(x+y)=f(x)+f(y) for all x,y, in R, if int_0^2 f(x)dx=alpha, then int_-2^2 f(x) dx is equal to

Suppose for every integer n, .int_(n)^(n+1) f(x)dx = n^(2) . The value of int_(-2)^(4) f(x)dx is :

Let f(x) be a contiuous function such a int_n^(n+1) f(x)dx=n^3, n in Z. Then, the value of the intergral int_-3^3 f(x) dx (A) 9 (B) -27 (C) -9 (D) none of these

If f(a+x)=f(x), then int_(0)^(na) f(x)dx is equal to (n in N)

If f(x) is a continuous function defined on [0,\ 2a]dot\ Then prove that int_0^(2a)f(x)dx=int_0^a{f(x)+(2a-x)}dx

Let f(x) is a continuous function symmetric about the lines x=1a n dx=2. If int_0^(2)f(x)dx=3 and int_0^(50)f(x)=I , then [sqrt(I)] is equal to (where [.] is G.I.F.) (a) 5 (b) 8 (c) 7 (d) 6

int_0^1f(x)dx=1,\ int_0^1xf(x)dx=a ,\ int_0^1x^2f(x)dx=a^2,\ t h e n\ int_0^1(a-x)^2f(x)dx equals a. 4a^2 b. 0 c. 2a^2 d. none of these

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. f(x) is a continuous function for all real values of x and satisfies i...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |