Home
Class 12
MATHS
The value of the definite integral int(0...

The value of the definite integral `int_(0)^(pi//3) ln (1+ sqrt3tan x )dx` equals

A

`pi/3 ln 2`

B

`pi/3`

C

`(pi^(2))/(6) ln 2`

D

`pi/2 ln 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \( I = \int_{0}^{\frac{\pi}{3}} \ln(1 + \sqrt{3} \tan x) \, dx \), we will use the property of definite integrals and some logarithmic identities. Let's go through the steps in detail. ### Step-by-Step Solution: 1. **Define the Integral**: \[ I = \int_{0}^{\frac{\pi}{3}} \ln(1 + \sqrt{3} \tan x) \, dx \] 2. **Use the Property of Definite Integrals**: We can use the property that states: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] Here, we set \( a = \frac{\pi}{3} \): \[ I = \int_{0}^{\frac{\pi}{3}} \ln(1 + \sqrt{3} \tan(\frac{\pi}{3} - x)) \, dx \] 3. **Simplify \( \tan(\frac{\pi}{3} - x) \)**: Using the tangent subtraction formula: \[ \tan(\frac{\pi}{3} - x) = \frac{\tan(\frac{\pi}{3}) - \tan(x)}{1 + \tan(\frac{\pi}{3}) \tan(x)} = \frac{\sqrt{3} - \tan x}{1 + \sqrt{3} \tan x} \] 4. **Substitute Back into the Integral**: Substitute this back into the integral: \[ I = \int_{0}^{\frac{\pi}{3}} \ln\left(1 + \sqrt{3} \cdot \frac{\sqrt{3} - \tan x}{1 + \sqrt{3} \tan x}\right) \, dx \] 5. **Simplify the Logarithm**: Simplifying the argument of the logarithm: \[ 1 + \sqrt{3} \cdot \frac{\sqrt{3} - \tan x}{1 + \sqrt{3} \tan x} = \frac{(1 + \sqrt{3} \tan x) + \sqrt{3}(\sqrt{3} - \tan x)}{1 + \sqrt{3} \tan x} = \frac{4}{1 + \sqrt{3} \tan x} \] Thus: \[ I = \int_{0}^{\frac{\pi}{3}} \ln\left(\frac{4}{1 + \sqrt{3} \tan x}\right) \, dx \] 6. **Split the Logarithm**: Using the property of logarithms: \[ I = \int_{0}^{\frac{\pi}{3}} \ln(4) \, dx - \int_{0}^{\frac{\pi}{3}} \ln(1 + \sqrt{3} \tan x) \, dx \] The first integral evaluates to: \[ \ln(4) \cdot \frac{\pi}{3} \] 7. **Combine the Integrals**: So we have: \[ I = \frac{\pi}{3} \ln(4) - I \] Adding \( I \) to both sides gives: \[ 2I = \frac{\pi}{3} \ln(4) \] Thus: \[ I = \frac{\pi}{6} \ln(4) \] 8. **Simplify the Result**: Since \( \ln(4) = 2 \ln(2) \): \[ I = \frac{\pi}{6} \cdot 2 \ln(2) = \frac{\pi}{3} \ln(2) \] ### Final Answer: \[ I = \frac{\pi}{3} \ln(2) \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

The value of the definite integral int_(0)^(pi//2)sin x sin 2x sin 3x dx is equal to

The value of the definite integral int_0^(pi/2) ((1+sin3x)/(1+2sinx)) dx equals to

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

The value of the definite integral I = int_(0)^(pi)xsqrt(1+|cosx|) dx is equal to (A) 2sqrt(2)pi (B) sqrt(2) pi (C) 2 pi (D) 4 pi

The value of the integral int_(0) ^(pi//2) sin ^3 x dx is :

Evaluate the definite integrals int_(0)^((pi)/(4)tan x)dx

Statement-1: The value of the integral int_(pi//6)^(pi//3) (1)/(1+sqrt(tan)x)dx is equal to (pi)/(6) Statement-2: int_(a)^(b) f(x)dx=int_(a)^(b) f(a+b-x)dx

Evaluate the definite integrals int_2^3 1/x dx

int_(0)^(pi//2) log | tan x | dx is equal to

int_(0)^(pi//2) sin 2x log tan x dx is equal to

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. The value of the definite integral int(0)^(pi//3) ln (1+ sqrt3tan x )d...

    Text Solution

    |

  2. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  3. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  4. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  5. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  6. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  7. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  8. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  9. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  10. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  11. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  12. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  13. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  14. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  15. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  16. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  17. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  18. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  19. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  20. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  21. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |