Home
Class 12
MATHS
Let f :R to [(3)/(4), oo) be a surjectiv...

Let `f :R to [(3)/(4), oo)` be a surjective quadratic function with line of symmetry `2x -1=0 and f (1) =1`
If `g (x)=(f(x)+f(-x))/(2 ) then int (dx)/(sqrt(g (e ^(x))-2))`is equal to:

A

`sec ^(-1) (e ^(-x))+C`

B

`sec ^(-1) (e ^(x))+C`

C

`sin ^(-1) (e ^(-x)) +C`

D

`sin ^(-1) (e ^(x))+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will follow the reasoning laid out in the video transcript. ### Step 1: Define the Quadratic Function We know that \( f : \mathbb{R} \to \left[\frac{3}{4}, \infty\right) \) is a surjective quadratic function with a line of symmetry given by \( 2x - 1 = 0 \). This implies that the vertex of the quadratic function occurs at \( x = \frac{1}{2} \). Since the function is surjective and has a minimum value of \( \frac{3}{4} \), we can express \( f(x) \) in vertex form: \[ f(x) = a\left(x - \frac{1}{2}\right)^2 + \frac{3}{4} \] where \( a > 0 \). ### Step 2: Use the Condition \( f(1) = 1 \) We substitute \( x = 1 \) into the function: \[ f(1) = a\left(1 - \frac{1}{2}\right)^2 + \frac{3}{4} = 1 \] This simplifies to: \[ a\left(\frac{1}{2}\right)^2 + \frac{3}{4} = 1 \] \[ \frac{a}{4} + \frac{3}{4} = 1 \] Subtracting \( \frac{3}{4} \) from both sides gives: \[ \frac{a}{4} = \frac{1}{4} \] Thus, \( a = 1 \). ### Step 3: Write the Function Explicitly Now we can write the function explicitly: \[ f(x) = \left(x - \frac{1}{2}\right)^2 + \frac{3}{4} \] Expanding this, we get: \[ f(x) = x^2 - x + \frac{1}{4} + \frac{3}{4} = x^2 - x + 1 \] ### Step 4: Find \( f(-x) \) Next, we calculate \( f(-x) \): \[ f(-x) = (-x)^2 - (-x) + 1 = x^2 + x + 1 \] ### Step 5: Calculate \( g(x) \) Now we can find \( g(x) \): \[ g(x) = \frac{f(x) + f(-x)}{2} = \frac{(x^2 - x + 1) + (x^2 + x + 1)}{2} \] This simplifies to: \[ g(x) = \frac{2x^2 + 2}{2} = x^2 + 1 \] ### Step 6: Set Up the Integral We need to evaluate the integral: \[ \int \frac{dx}{\sqrt{g(e^x) - 2}} \] Substituting \( g(e^x) \): \[ g(e^x) = (e^x)^2 + 1 = e^{2x} + 1 \] Thus, we have: \[ g(e^x) - 2 = e^{2x} + 1 - 2 = e^{2x} - 1 \] The integral now becomes: \[ \int \frac{dx}{\sqrt{e^{2x} - 1}} \] ### Step 7: Substitute and Simplify Let \( e^x = t \), then \( dx = \frac{dt}{t} \): \[ \int \frac{dt/t}{\sqrt{t^2 - 1}} = \int \frac{dt}{t\sqrt{t^2 - 1}} \] This integral can be solved using the formula: \[ \int \frac{dt}{t\sqrt{t^2 - 1}} = \sec^{-1}(t) + C \] Substituting back \( t = e^x \): \[ \int \frac{dx}{\sqrt{g(e^x) - 2}} = \sec^{-1}(e^x) + C \] ### Final Answer Thus, the final answer is: \[ \sec^{-1}(e^x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|3 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|27 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

Let f :R to [(3)/(4), oo) be a surjective quadratic function with line of symmetry 2x -1=0 and f (1) =1 int (e ^(x))/(f (e ^(x)))dx

Let f(x)=2x+1 and g(x)=int(f(x))/(x^(2)(x+1)^(2))dx . If 6g(2)+1=0 then g(-(1)/(2)) is equal to

Let f(x) be a function such that f(x).f(y)=f(x+y) , f(0)=1 , f(1)=4 . If 2g(x)=f(x).(1-g(x))

Let g (x )=f ( x- sqrt( 1-x ^(2))) and f ' (x) =1-x ^(2) then g'(x) equal to:

Let g (x) be then inverse of f (x) such that f '(x) =(1)/(1+ x ^(5)), then (d^(2) (g (x)))/(dx ^(2)) is equal to:

Let g (x) be then inverse of f (x) such that f '(x) =(1)/(1+ x ^(5)), then (d^(2) (g (x)))/(dx ^(2)) is equal to:

Let f (x) be a twice differentiable function defined on (-oo,oo) such that f (x) =f (2-x)and f '((1)/(2 )) =f' ((1)/(4))=0. Then int _(-1) ^(1) f'(1+ x ) x ^(2) e ^(x ^(2))dx is equal to :

Let f : R to R be a continuously differentiable function such that f(2) = 6 and f'(2) = 1/48 . If int_(6)^(f(x)) 4t^(3) dt = (x-2) g(x) than lim_( x to 2) g(x) is equal to

Let f(x) be a continuous function for all x in R and f'(0) =1 then g(x) = f(|x|)-sqrt((1-cos 2x)/(2)), at x=0,

Let g be the inverse function of a differentiable function f and G (x) =(1)/(g (x)). If f (4) =2 and f '(4) =(1)/(16), then the value of (G'(2))^(2) equals to: