Home
Class 12
MATHS
Let f :R to [(3)/(4), oo) be a surjectiv...

Let `f :R to [(3)/(4), oo)` be a surjective quadratic function with line of symmetry `2x -1=0 and f (1) =1`
`int (e ^(x))/(f (e ^(x)))dx`

A

`cot ^(-1) ((2x ^(2) -1)/(sqet3))+C`

B

`(2)/(sqrt3)cot ^(-1) ((2x ^(2) -1)/(sqet3))+C`

C

`tan ^(-1) ((2x ^(2) -1)/(sqet3))+C`

D

`(2)/(sqrt3)tan ^(-1) ((2x ^(2) -1)/(sqet3))+C`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|3 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|27 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|16 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

Let f :R to [(3)/(4), oo) be a surjective quadratic function with line of symmetry 2x -1=0 and f (1) =1 If g (x)=(f(x)+f(-x))/(2 ) then int (dx)/(sqrt(g (e ^(x))-2)) is equal to:

Let f : R rarr R : f(x) = (2x-3)/(4) be an invertible function. Find f^(-1) .

Let f:R ->(0,oo) be a real valued function satisfying int_0^x tf(x-t) dt =e^(2x)-1 then find f(x) ?

Let f :R ^(+) to R be a differentiable function with f (1)=3 and satisfying : int _(1) ^(xy) f(t) dt =y int_(1) ^(x) f (t) dt +x int_(1) ^(y) f (t) dt AA x, y in R^(+), then f (e) =

Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x for all x in (0,oo) and f(1)=1 , then

Let f (x) be a quadratic function such that f (0) =1 and f(-1)=4, ifint(f(x))/(x^(2)(1+x)^(2))dx is a rational function then the value of f(10)

Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x for all x in (0,oo) and f(1)=1 , then f(x) is

Let f (x) be a twice differentiable function defined on (-oo,oo) such that f (x) =f (2-x)and f '((1)/(2 )) =f' ((1)/(4))=0. Then int _(-1) ^(1) f'(1+ x ) x ^(2) e ^(x ^(2))dx is equal to :

Let f be a differentiable function such that f'(x) = f(x) + int_(0)^(2) f(x) dx and f(0) = (4-e^(2))/(3) . Find f(x) .

Let a function f:R to R be defined as f (x) =x+ sin x. The value of int _(0) ^(2pi)f ^(-1)(x) dx will be: