Home
Class 12
MATHS
A function y=f (x) satisfies the differe...

A function y=f (x) satisfies the differential equation `f(x) sin 2x-cos x+(1 + sin^2x)f'(x)= 0` with initial condition `y(0)=0`. The value of `f(pi/6)` is equal to (A) `1/5` (B) `3/5` (C) `4/5` (D) `2/5`

A

`1/5`

B

`3/5`

C

`4/5`

D

`2/5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given differential equation \( f(x) \sin 2x - \cos x + (1 + \sin^2 x) f'(x) = 0 \) with the initial condition \( f(0) = 0 \), we will follow these steps: ### Step 1: Rewrite the Differential Equation We start with the equation: \[ f(x) \sin 2x - \cos x + (1 + \sin^2 x) f'(x) = 0 \] Rearranging gives: \[ (1 + \sin^2 x) f'(x) = \cos x - f(x) \sin 2x \] Now, we can express this in the standard form of a linear differential equation: \[ f'(x) + \frac{\sin 2x}{1 + \sin^2 x} f(x) = \frac{\cos x}{1 + \sin^2 x} \] ### Step 2: Identify \( p(x) \) and \( q(x) \) From the standard form \( f' + p(x) f = q(x) \), we identify: \[ p(x) = \frac{\sin 2x}{1 + \sin^2 x}, \quad q(x) = \frac{\cos x}{1 + \sin^2 x} \] ### Step 3: Find the Integrating Factor The integrating factor \( \mu(x) \) is given by: \[ \mu(x) = e^{\int p(x) \, dx} = e^{\int \frac{\sin 2x}{1 + \sin^2 x} \, dx} \] Let \( t = 1 + \sin^2 x \), then \( dt = 2 \sin x \cos x \, dx = \sin 2x \, dx \). Thus: \[ \int \frac{\sin 2x}{1 + \sin^2 x} \, dx = \int \frac{dt}{t} = \ln |t| + C = \ln |1 + \sin^2 x| + C \] So, the integrating factor is: \[ \mu(x) = 1 + \sin^2 x \] ### Step 4: Multiply through by the Integrating Factor Multiply the entire differential equation by the integrating factor: \[ (1 + \sin^2 x) f' + \sin 2x f = \cos x \] ### Step 5: Integrate Both Sides The left-hand side can be expressed as the derivative of a product: \[ \frac{d}{dx} \left( (1 + \sin^2 x) f \right) = \cos x \] Integrating both sides gives: \[ (1 + \sin^2 x) f = \int \cos x \, dx = \sin x + C \] ### Step 6: Solve for \( f(x) \) Thus, we have: \[ f(x) = \frac{\sin x + C}{1 + \sin^2 x} \] ### Step 7: Apply the Initial Condition Using the initial condition \( f(0) = 0 \): \[ f(0) = \frac{\sin 0 + C}{1 + \sin^2 0} = \frac{0 + C}{1 + 0} = C \] Since \( f(0) = 0 \), we find \( C = 0 \). Therefore: \[ f(x) = \frac{\sin x}{1 + \sin^2 x} \] ### Step 8: Find \( f\left(\frac{\pi}{6}\right) \) Now we compute: \[ f\left(\frac{\pi}{6}\right) = \frac{\sin\left(\frac{\pi}{6}\right)}{1 + \sin^2\left(\frac{\pi}{6}\right)} = \frac{\frac{1}{2}}{1 + \left(\frac{1}{2}\right)^2} = \frac{\frac{1}{2}}{1 + \frac{1}{4}} = \frac{\frac{1}{2}}{\frac{5}{4}} = \frac{1}{2} \cdot \frac{4}{5} = \frac{2}{5} \] ### Final Answer Thus, the value of \( f\left(\frac{\pi}{6}\right) \) is: \[ \boxed{\frac{2}{5}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEM)|8 Videos
  • DIFFERENTIAL EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|2 Videos
  • DIFFERENTIAL EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|6 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos
  • ELLIPSE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|2 Videos

Similar Questions

Explore conceptually related problems

A function y = f(x) satisfies the differential (dy)/(dx)*sin x -y cos x+sin^2 x/x^2=0 such that y -> 0 as x -> oo . Then:

If y=f (x) satisfy the differential equation (dy)/(dx) + y/x =x ^(2),f (1)=1, then value of f (3) equals:

A function y=f(x) satisfies A function y=f(x) satisfies f" (x)= -1/x^2 - pi^2 sin(pix) ; f'(2) = pi+1/2 and f(1)=0 . The value of f(1/2) then

A real valued function f(x) satisfies the functional equation f(x-y) = f(x) f(y) - f(a-x) f(a+y) , where a is a given constant and f(0)=1 , f(2a-x) =?

If y=f(x) satisfies the differential equation (dy)/(dx)+(2x)/(1+x^(2))y=(3x^(2))/(1+x^(2)) where f(1)=1 , then f(2) is equal to

If the function / satisfies the relation f(x+y)+f(x-y)=2f(x),f(y)AAx , y in R and f(0)!=0 , then

At x = (5 pi)/( 6) , the function f (x) = 2 sin 3 x + 3 cos 3 x is

Let f(x) is a differentiable function on x in R , such that f(x+y)=f(x)f(y) for all x, y in R where f(0) ne 0 . If f(5)=10, f'(0)=0 , then the value of f'(5) is equal to

A function y = f(x) satisfies the condition f'(x) sin x + f(x) cos x=1 ,f(x) being bounded when x->0 . If I= int_0^(pi/2) f(x) dx then (A) pi/2ltIltpi^2/4 (B) pi/4ltIltpi^2/2 (C) 1ltIltpi/2 (D) 0ltIlt1

Let y=f(x) satisfies the equation f(x) = (e^(-x)+e^(x))cosx-2x+int_(0)^(x)(x-t)f^(')(t)dt The value of f(0)+f^(')(0) equal (a) -1 (b) 0 (c) 1 (d) none of these