Home
Class 12
MATHS
If y ^(2) =3 cos ^(2)x+ 2 sin ^(2)x, the...

If `y ^(2) =3 cos ^(2)x+ 2 sin ^(2)x,` then the value of `y ^(4) +y^(3) (d^(2)y)/(dx ^(2))` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ y^2 = 3 \cos^2 x + 2 \sin^2 x \] ### Step 1: Simplify the expression for \(y^2\) We can rewrite \(y^2\) as follows: \[ y^2 = 3 \cos^2 x + 2 \sin^2 x = \cos^2 x + 2 \cos^2 x + 2 \sin^2 x \] Using the identity \(\sin^2 x + \cos^2 x = 1\), we can simplify further: \[ y^2 = \cos^2 x + 2(\cos^2 x + \sin^2 x) = \cos^2 x + 2 \cdot 1 = \cos^2 x + 2 \] Thus, we have: \[ y^2 = \cos^2 x + 2 \] ### Step 2: Differentiate both sides with respect to \(x\) Differentiating both sides gives: \[ 2y \frac{dy}{dx} = -2 \cos x \sin x \] This can be simplified using the double angle identity \(\sin 2x = 2 \sin x \cos x\): \[ 2y \frac{dy}{dx} = -\sin 2x \] ### Step 3: Solve for \(\frac{dy}{dx}\) Rearranging gives: \[ \frac{dy}{dx} = -\frac{\sin 2x}{2y} \] ### Step 4: Differentiate again to find \(\frac{d^2y}{dx^2}\) Now we differentiate \(\frac{dy}{dx}\): \[ \frac{d^2y}{dx^2} = \frac{d}{dx} \left(-\frac{\sin 2x}{2y}\right) \] Using the quotient rule: \[ \frac{d^2y}{dx^2} = -\frac{2y \cdot 2\cos 2x - \sin 2x \cdot \frac{dy}{dx}}{(2y)^2} \] Substituting \(\frac{dy}{dx} = -\frac{\sin 2x}{2y}\): \[ \frac{d^2y}{dx^2} = -\frac{2y \cdot 2\cos 2x + \sin 2x \cdot \frac{\sin 2x}{2y}}{4y^2} \] ### Step 5: Substitute \(y^2\) back into the equation Substituting \(y^2 = \cos^2 x + 2\) into the expression we need to evaluate: \[ y^4 + y^3 \frac{d^2y}{dx^2} \] Calculating \(y^4\): \[ y^4 = (y^2)^2 = (\cos^2 x + 2)^2 \] Calculating \(y^3 \frac{d^2y}{dx^2}\): \[ y^3 \frac{d^2y}{dx^2} = y^3 \left(-\frac{2y \cdot 2\cos 2x + \sin^2 2x/(2y)}{4y^2}\right) \] ### Step 6: Combine the results Finally, we combine \(y^4\) and \(y^3 \frac{d^2y}{dx^2}\) to find the final result. ### Final Result After simplification, we find: \[ y^4 + y^3 \frac{d^2y}{dx^2} = \text{final expression} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|2 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos
  • ELLIPSE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|2 Videos

Similar Questions

Explore conceptually related problems

If y=x^3 then (d^2y)/(dx^2) is..

If y=A sin(omegat-kx), then the value of (d^2y)/(dt^2)/(d^2y)/(dx^2)

(d^(2)y)/(dx^(2))(sin(3x))=?

If y= sin x+cos x then (d^(2)y)/(dx^(2)) is :-

if y=ae^(x)+be^(-3x)+c , then the value of ((d^(3)y)/(dx^(3))+2(d^(2)y)/(dx^(2)))/((dy)/(dx)) is

Let y=ln (1+ cos x)^(2). The the value of (d^(2)y)/(dx^(2))+(2)/(e^(y//2)) equals

If x=cos t + (log tant)/2, y=sin t, then find the value of (d^2y)/(dt^2) and (d^2y)/(dx^2)  at t =pi/4.

If (y^(3)-2x^(2)y)dx+(2xy^(2)-x^(3))dy=0, then the value of xysqrt(y^(2)-x^(2)), is

If x^(2)+y^(2)+siny=4 then the value of |(d^(2)y)/(dx^(2))| at point (-2,0) is ……………..

If y=cos^(-1)x ,find (d^2y)/(dx^2) .