Home
Class 12
MATHS
Let f (x) be a diffentiable function in ...

Let `f (x)` be a diffentiable function in `[-1,oo) and f (0) =1` such that `Lim _(t to x +1) (t^(2) f(x+1) -(x+1) ^(2) f(t))/(f (t) -f(x+1))=1.` Find the value of `Lim _(x to 1) (ln (f(x )) -ln 2)/(x-1)` .

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|2 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos
  • ELLIPSE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|2 Videos

Similar Questions

Explore conceptually related problems

Let f : R to R be a differentiable function and f(1) = 4 . Then, the value of lim_(x to 1)int_(4)^(f(x))(2t)/(x-1)dt is :

If (x^2+x−2)/(x+3) -1) f(x) then find the value of lim_(x->-1) f(x)

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Let f(x) be differentiable on the interval (0,oo) such that f(1)=1 and lim_(t->x) (t^2f(x)-x^2f(t))/(t-x)=1 for each x>0 . Then f(x)=

If f(x) is differentiable function in the interval (0,oo) such that f(1) = 1 and lim_(trarrx) (t^(2)f(x)-x^(2)(t))/(t-x)=1 for each x gt 0 , then f((3)/(2)) is equal tv

Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x for all x in (0,oo) and f(1)=1 , then

Let f be continuous function on [0,oo) such that lim _(x to oo) (f(x)+ int _(o)^(x) f (t ) (dt)) exists. Find lim _(x to oo) f (x).

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

If lim_(trarrx) (e^(t)f(x)-e^(x)f(t))/((t-x)(f(x))^(2))=2 andf(0)=(1)/(2), then find the value of f'(0).

For the function f(x) = 2 . Find lim_(x to 1) f(x)