Home
Class 12
MATHS
If x,y,x gt 0 and x+y+z=1 then (xyz)/((1...

If `x,y,x gt 0 and x+y+z=1` then `(xyz)/((1-x) (1-y) (1-z))` is necessarily.

A

`ge8`

B

`le 1/8`

C

`1`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{xyz}{(1-x)(1-y)(1-z)}\) given that \(x, y, z > 0\) and \(x + y + z = 1\). ### Step-by-Step Solution: 1. **Using AM-GM Inequality for \(xyz\)**: Since \(x, y, z\) are positive and \(x + y + z = 1\), we can apply the Arithmetic Mean-Geometric Mean (AM-GM) inequality: \[ \frac{x + y + z}{3} \geq \sqrt[3]{xyz} \] Substituting \(x + y + z = 1\): \[ \frac{1}{3} \geq \sqrt[3]{xyz} \] Cubing both sides (since all variables are positive): \[ \left(\frac{1}{3}\right)^3 \geq xyz \implies \frac{1}{27} \geq xyz \] Thus, we have: \[ xyz \leq \frac{1}{27} \quad \text{(Equation 1)} \] 2. **Using AM-GM Inequality for \((1-x)(1-y)(1-z)\)**: We rewrite the terms \(1-x\), \(1-y\), and \(1-z\): \[ 1 - x = y + z, \quad 1 - y = x + z, \quad 1 - z = x + y \] Now, applying AM-GM again: \[ \frac{(1-x) + (1-y) + (1-z)}{3} \geq \sqrt[3]{(1-x)(1-y)(1-z)} \] The left-hand side simplifies to: \[ \frac{3 - (x + y + z)}{3} = \frac{3 - 1}{3} = \frac{2}{3} \] Therefore: \[ \frac{2}{3} \geq \sqrt[3]{(1-x)(1-y)(1-z)} \] Cubing both sides gives: \[ \left(\frac{2}{3}\right)^3 \geq (1-x)(1-y)(1-z) \implies \frac{8}{27} \geq (1-x)(1-y)(1-z) \quad \text{(Equation 2)} \] 3. **Finding the Ratio**: We need to find: \[ \frac{xyz}{(1-x)(1-y)(1-z)} \] Using the inequalities from Equations 1 and 2: \[ \frac{xyz}{(1-x)(1-y)(1-z)} \leq \frac{\frac{1}{27}}{\frac{8}{27}} = \frac{1}{8} \] Thus, we conclude that: \[ \frac{xyz}{(1-x)(1-y)(1-z)} \leq \frac{1}{8} \] ### Final Answer: The expression \(\frac{xyz}{(1-x)(1-y)(1-z)}\) is necessarily less than or equal to \(\frac{1}{8}\).
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|19 Videos
  • SEQUENCE AND SERIES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|16 Videos
  • QUADRATIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|45 Videos
  • SOLUTION OF TRIANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|11 Videos

Similar Questions

Explore conceptually related problems

If x,y,z gt 0 and x + y + z = 1, the prove that (2x)/(1 - x) + (2y)/(1 - y) + (2z)/(1 - z) ge 3 .

If x y+y z+x z=1 ,then prove that x/(1-x^2)+y/(1-y^2)+z/(1-z^2)=(4x y z)/((1-x^2)(1-y^2)(1-z^2)

If x y+y z+x z=1 ,then prove that x/(1-x^2)+y/(1-y^2)+z/(1-z^2)=(4x y z)/((1-x^2)(1-y^2)(1-z^2)

If x,y,z are in G.P. (x,y,z gt 1) , then (1)/(2x+log_(e)x) , (1)/(4x+log_(e)y) , (1)/(6x+log_(ez)z) are in

Verify that x3+y3+z3-3xyz=1/2(x+y+z)[(x-y)2+(y-z)2+(z-x)2]

If xyz = 1 and x, y, z gt 0 then the minimum value of the expression (x+2y)(y+2z)(z+2x) is

If x+y+z=x y z prove that (2x)/(1-x^2)+(2y)/(1-y^2)+(2z)/(1-z^2)=(2x)/(1-x^2)(2y)/(1-y^2)(2z)/(1-z^2)dot

If cot^(-1)x+cot^(-1)y+cot^(-1)z=pi/2,x , y , z >0a n dx y<1, then x+y+z is also equal to 1/x+1/y+1/z (b) x y z x y+y z+z x (d) none of these

If cot^(-1)x+cot^(-1)y+cot^(-1)z=pi/2,x , y , z >0a n dx y<1, then x+y+z is also equal to 1/x+1/y+1/z (b) x y z x y+y z+z x (d) none of these

If xyz=(1-x)(1-y)(1-z) Where 0<=x,y, z<=1 , then the minimum value of x(1-z)+y (1-x)+ z(1-y) is

VIKAS GUPTA (BLACK BOOK) ENGLISH-SEQUENCE AND SERIES -EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If x,y,x gt 0 and x+y+z=1 then (xyz)/((1-x) (1-y) (1-z)) is necessaril...

    Text Solution

    |

  2. Let a,b,c,d be four distinct real number in A.P.Then the smallest posi...

    Text Solution

    |

  3. The sum of all digits of n for which sum (r =1) ^(n ) r 2 ^(r ) = 2+2^...

    Text Solution

    |

  4. If lim ( n to oo) (r +2)/(2 ^(r+1) r (r+1))=1/k, then k =

    Text Solution

    |

  5. The value of sum (r =1) ^(oo) (8r)/(4r ^(4) +1) is equal to :

    Text Solution

    |

  6. If three non-zero distinct real numbers form an arithmatic progression...

    Text Solution

    |

  7. The sum of the fourth and twelfth term of an arithmetic progression is...

    Text Solution

    |

  8. In an increasing sequence of four positive integers, the first 3 terms...

    Text Solution

    |

  9. The limit of (1)/(n ^(4)) sum (k =1) ^(n) k (k +2) (k +4) as n to oo i...

    Text Solution

    |

  10. Which is the last digit of 1+2+3+……+ n if the last digit of 1 ^(3) + ...

    Text Solution

    |

  11. There distinct positive numbers, a,b,c are in G.P. while log (c) a, lo...

    Text Solution

    |

  12. The numbers 1/3, 1/3 log (x) y, 1/3 log (y) z, 1/7 log (x) x are in H...

    Text Solution

    |

  13. If sum ( k =1) ^(oo) (k^(2))/(3 ^(k))=p/q, where p and q are relativel...

    Text Solution

    |

  14. The sum of the terms of an infinitely decreassing Geometric Progressio...

    Text Solution

    |

  15. A cricketer has to score 4500 runs. Let a (n) denotes the number of ru...

    Text Solution

    |

  16. If x=10 sum(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] deno...

    Text Solution

    |

  17. Let f (n)=(4n + sqrt(4n ^(2) -1))/( sqrt(2n +1 )+sqrt(2n-1)),n in N th...

    Text Solution

    |

  18. Find the sum of series 1+1/2+1/3+1/4+1/6+1/8+1/9+1/12+…… oo, where the...

    Text Solution

    |

  19. Let a (1), a(2), a(3),…….., a(n) be real numbers in arithmatic progres...

    Text Solution

    |

  20. Let the roots of the equation 24 x ^(3) -14x ^(2) + kx +3=0 form a geo...

    Text Solution

    |

  21. How many ordered pair (s) satisfy log (x ^(3) + (1)/(3) y ^(3) + (1)/(...

    Text Solution

    |