Home
Class 12
MATHS
Let alpha, beta be two distinct values o...

Let `alpha, beta` be two distinct values of x lying in `(0,pi)` for which `sqrt5 sin x, 10 sin x, 10 (4 sin ^(2) x+1)` are 3 consecutive terms of a G.P. Then minimum value of `|alpha - beta|=`

A

`pi/10`

B

`pi/5`

C

`(2pi)/(5)`

D

`(3pi)/(5 )`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the minimum value of \(|\alpha - \beta|\) where \(\alpha\) and \(\beta\) are distinct values of \(x\) in the interval \((0, \pi)\) such that \(\sqrt{5} \sin x\), \(10 \sin x\), and \(10(4 \sin^2 x + 1)\) are three consecutive terms of a geometric progression (G.P.). ### Step-by-Step Solution: 1. **Identify the Terms**: Let: - \(a = \sqrt{5} \sin x\) - \(b = 10 \sin x\) - \(c = 10(4 \sin^2 x + 1)\) 2. **Use the G.P. Condition**: For \(a\), \(b\), and \(c\) to be in G.P., we have: \[ b^2 = ac \] 3. **Substitute the Values**: Substitute \(a\), \(b\), and \(c\) into the G.P. condition: \[ (10 \sin x)^2 = \sqrt{5} \sin x \cdot 10(4 \sin^2 x + 1) \] 4. **Simplify the Equation**: This leads to: \[ 100 \sin^2 x = 10 \sqrt{5} \sin x (4 \sin^2 x + 1) \] Dividing both sides by \(10 \sin x\) (assuming \(\sin x \neq 0\)): \[ 10 \sin x = \sqrt{5} (4 \sin^2 x + 1) \] 5. **Rearranging the Equation**: Rearranging gives: \[ 4 \sqrt{5} \sin^2 x - 10 \sin x + \sqrt{5} = 0 \] 6. **Quadratic Form**: This is a quadratic equation in \(\sin x\): \[ 4 \sqrt{5} y^2 - 10y + \sqrt{5} = 0 \] where \(y = \sin x\). 7. **Using the Quadratic Formula**: The roots can be found using the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \(a = 4\sqrt{5}\), \(b = -10\), and \(c = \sqrt{5}\): \[ y = \frac{10 \pm \sqrt{(-10)^2 - 4 \cdot 4\sqrt{5} \cdot \sqrt{5}}}{2 \cdot 4\sqrt{5}} \] Simplifying gives: \[ y = \frac{10 \pm \sqrt{100 - 80}}{8\sqrt{5}} = \frac{10 \pm \sqrt{20}}{8\sqrt{5}} = \frac{10 \pm 2\sqrt{5}}{8\sqrt{5}} = \frac{5 \pm \sqrt{5}}{4\sqrt{5}} \] 8. **Finding the Values of \(\sin x\)**: Thus, the two values of \(\sin x\) are: \[ \sin x_1 = \frac{5 + \sqrt{5}}{4\sqrt{5}}, \quad \sin x_2 = \frac{5 - \sqrt{5}}{4\sqrt{5}} \] 9. **Finding the Angles**: The angles corresponding to these sine values in the interval \((0, \pi)\) are: \[ x_1 = \arcsin\left(\frac{5 + \sqrt{5}}{4\sqrt{5}}\right), \quad x_2 = \arcsin\left(\frac{5 - \sqrt{5}}{4\sqrt{5}}\right) \] 10. **Calculating \(|\alpha - \beta|\)**: The difference is: \[ |\alpha - \beta| = |x_1 - x_2| \] 11. **Finding Minimum Value**: To find the minimum value, we can calculate: \[ |x_1 - x_2| = \left|\arcsin\left(\frac{5 + \sqrt{5}}{4\sqrt{5}}\right) - \arcsin\left(\frac{5 - \sqrt{5}}{4\sqrt{5}}\right)\right| \] 12. **Final Result**: After evaluating the angles, we find that the minimum value of \(|\alpha - \beta|\) is: \[ \frac{\pi}{5} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|19 Videos
  • SEQUENCE AND SERIES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|16 Videos
  • QUADRATIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|45 Videos
  • SOLUTION OF TRIANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|11 Videos

Similar Questions

Explore conceptually related problems

If alpha, beta are two different values of x lying between 0 and 2pi which satisfy the equation 6 cos x + 8 sin x = 9 , find the value of sin (alpha + beta)

Let alpha and beta be any two positve values of x for which 2 cos x, | cos x| and 1-3 cos^(2)x are in GP. The minium value of |alpha+beta| is

Let alpha, beta be any two positive values of x for which 2"cos"x, |"cos"x| " and " 1-3"cos"^(2) x are in G.P. The minimum value of |alpha -beta| , is

If alpha le sin^(-1)x+cos^(-1)x +tan^(-1)xlebeta then find the value of alpha and beta

If alpha , beta are two different values of theta lying between 0 and 2pi which satisfy the equation 6 cos theta + 8 sin theta=9, find the value of sin ( alpha + beta).

If sin alpha sin beta - cos alpha cos beta + 1=0, then the value of 1+cot alpha tan beta is

If cot(alpha+beta)=0\ ,\ then write the value of "sin"(alpha+2beta) .

Let alpha & beta be distinct positive roots of the equation tanx = 2x , then evaluate int_(0)^(1)sin(alphax).sin(betax) dx

If (alpha, beta) is a point of intersection of the lines xcostheta +y sin theta= 3 and x sin theta-y cos theta= 4 where theta is parameter, then maximum value of 2^((alpha+beta)/(sqrt(2)) is

If alpha and beta are two different values of theta lying between 0 and 2pi which satisfy the equations 6costheta+8sin theta=9 , find the value of sin2(alpha+beta) .

VIKAS GUPTA (BLACK BOOK) ENGLISH-SEQUENCE AND SERIES -EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Let alpha, beta be two distinct values of x lying in (0,pi) for which ...

    Text Solution

    |

  2. Let a,b,c,d be four distinct real number in A.P.Then the smallest posi...

    Text Solution

    |

  3. The sum of all digits of n for which sum (r =1) ^(n ) r 2 ^(r ) = 2+2^...

    Text Solution

    |

  4. If lim ( n to oo) (r +2)/(2 ^(r+1) r (r+1))=1/k, then k =

    Text Solution

    |

  5. The value of sum (r =1) ^(oo) (8r)/(4r ^(4) +1) is equal to :

    Text Solution

    |

  6. If three non-zero distinct real numbers form an arithmatic progression...

    Text Solution

    |

  7. The sum of the fourth and twelfth term of an arithmetic progression is...

    Text Solution

    |

  8. In an increasing sequence of four positive integers, the first 3 terms...

    Text Solution

    |

  9. The limit of (1)/(n ^(4)) sum (k =1) ^(n) k (k +2) (k +4) as n to oo i...

    Text Solution

    |

  10. Which is the last digit of 1+2+3+……+ n if the last digit of 1 ^(3) + ...

    Text Solution

    |

  11. There distinct positive numbers, a,b,c are in G.P. while log (c) a, lo...

    Text Solution

    |

  12. The numbers 1/3, 1/3 log (x) y, 1/3 log (y) z, 1/7 log (x) x are in H...

    Text Solution

    |

  13. If sum ( k =1) ^(oo) (k^(2))/(3 ^(k))=p/q, where p and q are relativel...

    Text Solution

    |

  14. The sum of the terms of an infinitely decreassing Geometric Progressio...

    Text Solution

    |

  15. A cricketer has to score 4500 runs. Let a (n) denotes the number of ru...

    Text Solution

    |

  16. If x=10 sum(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] deno...

    Text Solution

    |

  17. Let f (n)=(4n + sqrt(4n ^(2) -1))/( sqrt(2n +1 )+sqrt(2n-1)),n in N th...

    Text Solution

    |

  18. Find the sum of series 1+1/2+1/3+1/4+1/6+1/8+1/9+1/12+…… oo, where the...

    Text Solution

    |

  19. Let a (1), a(2), a(3),…….., a(n) be real numbers in arithmatic progres...

    Text Solution

    |

  20. Let the roots of the equation 24 x ^(3) -14x ^(2) + kx +3=0 form a geo...

    Text Solution

    |

  21. How many ordered pair (s) satisfy log (x ^(3) + (1)/(3) y ^(3) + (1)/(...

    Text Solution

    |