Home
Class 12
MATHS
If sum ( r -1) ^(n) T(r) = (n (n +1)(n+2...

If `sum _( r -1) ^(n) T_(r) = (n (n +1)(n+2))/(3), then lim _(x to oo) sum _(r =1) ^(n) (2008)/(T_(r))=`

A

2008

B

3012

C

4016

D

8032

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equation: \[ \sum_{r=1}^{n} T_r = \frac{n(n+1)(n+2)}{3} \] We need to find: \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{2008}{T_r} \] ### Step 1: Identify the expression for \( T_r \) From the equation, we can express \( T_r \) in terms of \( n \): \[ T_r = \frac{r(r+1)(r+2)}{3} \] ### Step 2: Substitute \( T_r \) into the limit expression We need to evaluate: \[ \sum_{r=1}^{n} \frac{2008}{T_r} = \sum_{r=1}^{n} \frac{2008 \cdot 3}{r(r+1)(r+2)} \] This simplifies to: \[ = 6024 \sum_{r=1}^{n} \frac{1}{r(r+1)(r+2)} \] ### Step 3: Simplify the fraction using partial fractions We can decompose \( \frac{1}{r(r+1)(r+2)} \) into partial fractions: \[ \frac{1}{r(r+1)(r+2)} = \frac{A}{r} + \frac{B}{r+1} + \frac{C}{r+2} \] Multiplying through by \( r(r+1)(r+2) \) and solving for \( A, B, C \): \[ 1 = A(r+1)(r+2) + B(r)(r+2) + C(r)(r+1) \] Setting \( r = 0 \): \[ 1 = 2A \implies A = \frac{1}{2} \] Setting \( r = -1 \): \[ 1 = -B \implies B = -1 \] Setting \( r = -2 \): \[ 1 = 2C \implies C = \frac{1}{2} \] Thus, we have: \[ \frac{1}{r(r+1)(r+2)} = \frac{1/2}{r} - \frac{1}{r+1} + \frac{1/2}{r+2} \] ### Step 4: Substitute back into the sum Now substituting back into the sum: \[ \sum_{r=1}^{n} \left( \frac{1/2}{r} - \frac{1}{r+1} + \frac{1/2}{r+2} \right) \] This can be separated: \[ = \frac{1}{2} \sum_{r=1}^{n} \frac{1}{r} - \sum_{r=1}^{n} \frac{1}{r+1} + \frac{1}{2} \sum_{r=1}^{n} \frac{1}{r+2} \] ### Step 5: Evaluate the sums The sums can be evaluated as follows: \[ \sum_{r=1}^{n} \frac{1}{r} \approx \ln(n) + \gamma \quad \text{(where \( \gamma \) is the Euler-Mascheroni constant)} \] \[ \sum_{r=1}^{n} \frac{1}{r+1} \approx \ln(n+1) + \gamma \] \[ \sum_{r=1}^{n} \frac{1}{r+2} \approx \ln(n+2) + \gamma \] ### Step 6: Combine and simplify Combining these gives: \[ \frac{1}{2} (\ln(n) + \gamma) - (\ln(n+1) + \gamma) + \frac{1}{2} (\ln(n+2) + \gamma) \] As \( n \to \infty \), this simplifies to: \[ \frac{1}{2} \ln(n) - \ln(n) + \frac{1}{2} \ln(n) = 0 \] Thus, the limit becomes: \[ \lim_{n \to \infty} 6024 \cdot 0 = 0 \] ### Step 7: Final limit expression Now, substituting back into the limit expression: \[ \lim_{n \to \infty} \sum_{r=1}^{n} \frac{2008}{T_r} = 2008 \cdot 0 = 0 \] ### Conclusion Thus, the final answer is: \[ \boxed{2008} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|19 Videos
  • SEQUENCE AND SERIES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|16 Videos
  • QUADRATIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|45 Videos
  • SOLUTION OF TRIANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|11 Videos

Similar Questions

Explore conceptually related problems

If sum _( r -1) ^(n) T_(r) = (n (n +1)(n+2))/(3), then lim _(x to oo) sum _(r =1) ^(n) (3012)/(T_(r))=

If sum_(r=1)^(n) T_(r)=(n(n+1)(n+2)(n+3))/(8) , then lim_(ntooo) sum_(r=1)^(n) (1)/(T_(r))=

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

If sum _(r =1) ^(n ) T _(r) = (n +1) ( n +2) ( n +3) then find sum _( r =1) ^(n) (1)/(T _(r))

If sum_(r=1)^(n) a_(r)=(1)/(6)n(n+1)(n+2) for all nge1 , then lim_(ntooo) sum_(r=1)^(n) (1)/(a_(r)) , is

lim_(nto oo) (1)/(n^(2))sum_(r=1)^(n) re^(r//n)=

lim_(nto oo)sum_(r=1)^(n)r/(n^(2)+n+4) equals

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

If Sigma_(r=1)^(n) T_(r)=n(2n^(2)+9n+13) , then find the sum Sigma_(r=1)^(n)sqrt(T_(r)) .

If sum_(r=1)^n t_r=n/8(n+1)(n+2)(n+3), then find sum_(r=1)^n1/(t_r)dot

VIKAS GUPTA (BLACK BOOK) ENGLISH-SEQUENCE AND SERIES -EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If sum ( r -1) ^(n) T(r) = (n (n +1)(n+2))/(3), then lim (x to oo) sum...

    Text Solution

    |

  2. Let a,b,c,d be four distinct real number in A.P.Then the smallest posi...

    Text Solution

    |

  3. The sum of all digits of n for which sum (r =1) ^(n ) r 2 ^(r ) = 2+2^...

    Text Solution

    |

  4. If lim ( n to oo) (r +2)/(2 ^(r+1) r (r+1))=1/k, then k =

    Text Solution

    |

  5. The value of sum (r =1) ^(oo) (8r)/(4r ^(4) +1) is equal to :

    Text Solution

    |

  6. If three non-zero distinct real numbers form an arithmatic progression...

    Text Solution

    |

  7. The sum of the fourth and twelfth term of an arithmetic progression is...

    Text Solution

    |

  8. In an increasing sequence of four positive integers, the first 3 terms...

    Text Solution

    |

  9. The limit of (1)/(n ^(4)) sum (k =1) ^(n) k (k +2) (k +4) as n to oo i...

    Text Solution

    |

  10. Which is the last digit of 1+2+3+……+ n if the last digit of 1 ^(3) + ...

    Text Solution

    |

  11. There distinct positive numbers, a,b,c are in G.P. while log (c) a, lo...

    Text Solution

    |

  12. The numbers 1/3, 1/3 log (x) y, 1/3 log (y) z, 1/7 log (x) x are in H...

    Text Solution

    |

  13. If sum ( k =1) ^(oo) (k^(2))/(3 ^(k))=p/q, where p and q are relativel...

    Text Solution

    |

  14. The sum of the terms of an infinitely decreassing Geometric Progressio...

    Text Solution

    |

  15. A cricketer has to score 4500 runs. Let a (n) denotes the number of ru...

    Text Solution

    |

  16. If x=10 sum(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] deno...

    Text Solution

    |

  17. Let f (n)=(4n + sqrt(4n ^(2) -1))/( sqrt(2n +1 )+sqrt(2n-1)),n in N th...

    Text Solution

    |

  18. Find the sum of series 1+1/2+1/3+1/4+1/6+1/8+1/9+1/12+…… oo, where the...

    Text Solution

    |

  19. Let a (1), a(2), a(3),…….., a(n) be real numbers in arithmatic progres...

    Text Solution

    |

  20. Let the roots of the equation 24 x ^(3) -14x ^(2) + kx +3=0 form a geo...

    Text Solution

    |

  21. How many ordered pair (s) satisfy log (x ^(3) + (1)/(3) y ^(3) + (1)/(...

    Text Solution

    |