Home
Class 12
MATHS
sum(r=1)^10 r/(1-3r^2+r^4)...

`sum_(r=1)^10 r/(1-3r^2+r^4)`

A

`-(50)/(109)`

B

`-(54)/(109)`

C

`-(55)/(111)`

D

`-(55)/(109)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the summation \( \sum_{r=1}^{10} \frac{r}{1 - 3r^2 + r^4} \), we will follow these steps: ### Step 1: Simplify the Denominator First, we rewrite the denominator: \[ 1 - 3r^2 + r^4 = r^4 - 3r^2 + 1 \] We can rearrange this as: \[ r^4 - 2r^2 + 1 - r^2 = (r^2 - 1)^2 - r^2 \] ### Step 2: Factor the Expression Using the difference of squares, we factor the expression: \[ \frac{r}{(r^2 - 1)^2 - r^2} = \frac{r}{(r^2 - 1 - r)(r^2 - 1 + r)} \] This gives us: \[ \frac{r}{(r^2 - r - 1)(r^2 + r - 1)} \] ### Step 3: Rewrite the Summation Now, we can express the term \( \frac{r}{(r^2 - r - 1)(r^2 + r - 1)} \) in a form suitable for summation: \[ \frac{r}{(r^2 - r - 1)(r^2 + r - 1)} = \frac{1}{2} \left( \frac{1}{r^2 - r - 1} - \frac{1}{r^2 + r - 1} \right) \] ### Step 4: Evaluate the Summation Now, we can write the summation as: \[ \sum_{r=1}^{10} \frac{1}{2} \left( \frac{1}{r^2 - r - 1} - \frac{1}{r^2 + r - 1} \right) \] This can be simplified to: \[ \frac{1}{2} \left( \sum_{r=1}^{10} \frac{1}{r^2 - r - 1} - \sum_{r=1}^{10} \frac{1}{r^2 + r - 1} \right) \] ### Step 5: Calculate Each Term Now we calculate each term for \( r = 1 \) to \( 10 \): 1. For \( r = 1 \): \[ T_1 = \frac{1}{2} \left( \frac{1}{1 - 1 - 1} - \frac{1}{1 + 1 - 1} \right) = \frac{1}{2} \left( \frac{1}{-1} - \frac{1}{1} \right) = \frac{1}{2} (-1 - 1) = -1 \] 2. For \( r = 2 \): \[ T_2 = \frac{1}{2} \left( \frac{1}{4 - 2 - 1} - \frac{1}{4 + 2 - 1} \right) = \frac{1}{2} \left( \frac{1}{1} - \frac{1}{5} \right) = \frac{1}{2} \left( 1 - 0.2 \right) = \frac{0.8}{2} = 0.4 \] 3. Continue this for \( r = 3 \) to \( r = 10 \). ### Step 6: Sum All Terms After calculating each term, we sum them up. Notice that many terms will cancel out due to the telescoping nature of the series. ### Final Result After performing all calculations and summing the results, we find: \[ \sum_{r=1}^{10} \frac{r}{1 - 3r^2 + r^4} = -\frac{55}{109} \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|19 Videos
  • SEQUENCE AND SERIES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|16 Videos
  • QUADRATIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|45 Videos
  • SOLUTION OF TRIANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate: sum_(r=1)^n(3^r-2^r)

Find the sum sum_(r=1)^n r/(r+1)!

Find the sum sum_(r=1)^n r(r+1)(r+2)(r+3)

If a=sum_(r=1)^oo 1/r^4 then sum_(r=1)^oo 1/((2r-1)^4)=

Find the sum sum_(r=1)^n r(r+1)(r+2)(r+3)dot

If S=sum_(r=1)^(80)(r)/((r^4+r^2+1)) , then the value of (6481s)/(1000) is

If x=10 sum_(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] denotes gratest integer function)

lim_(nrarr0) sum_(r=1)^(n) ((r^(3))/(r^(4)+n^(4))) equals to :

sum_(r=1)^n (r^2 - r-1)/((r+1)!) is equal to :

If a=sum_(r=1)^oo(1/r)^2, b=sum_(r=1)^oo1/((2r-1)^2), then a/b= (A) 5/4 (B) 4/5 (C) 3/4 (D) none of these

VIKAS GUPTA (BLACK BOOK) ENGLISH-SEQUENCE AND SERIES -EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. sum(r=1)^10 r/(1-3r^2+r^4)

    Text Solution

    |

  2. Let a,b,c,d be four distinct real number in A.P.Then the smallest posi...

    Text Solution

    |

  3. The sum of all digits of n for which sum (r =1) ^(n ) r 2 ^(r ) = 2+2^...

    Text Solution

    |

  4. If lim ( n to oo) (r +2)/(2 ^(r+1) r (r+1))=1/k, then k =

    Text Solution

    |

  5. The value of sum (r =1) ^(oo) (8r)/(4r ^(4) +1) is equal to :

    Text Solution

    |

  6. If three non-zero distinct real numbers form an arithmatic progression...

    Text Solution

    |

  7. The sum of the fourth and twelfth term of an arithmetic progression is...

    Text Solution

    |

  8. In an increasing sequence of four positive integers, the first 3 terms...

    Text Solution

    |

  9. The limit of (1)/(n ^(4)) sum (k =1) ^(n) k (k +2) (k +4) as n to oo i...

    Text Solution

    |

  10. Which is the last digit of 1+2+3+……+ n if the last digit of 1 ^(3) + ...

    Text Solution

    |

  11. There distinct positive numbers, a,b,c are in G.P. while log (c) a, lo...

    Text Solution

    |

  12. The numbers 1/3, 1/3 log (x) y, 1/3 log (y) z, 1/7 log (x) x are in H...

    Text Solution

    |

  13. If sum ( k =1) ^(oo) (k^(2))/(3 ^(k))=p/q, where p and q are relativel...

    Text Solution

    |

  14. The sum of the terms of an infinitely decreassing Geometric Progressio...

    Text Solution

    |

  15. A cricketer has to score 4500 runs. Let a (n) denotes the number of ru...

    Text Solution

    |

  16. If x=10 sum(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] deno...

    Text Solution

    |

  17. Let f (n)=(4n + sqrt(4n ^(2) -1))/( sqrt(2n +1 )+sqrt(2n-1)),n in N th...

    Text Solution

    |

  18. Find the sum of series 1+1/2+1/3+1/4+1/6+1/8+1/9+1/12+…… oo, where the...

    Text Solution

    |

  19. Let a (1), a(2), a(3),…….., a(n) be real numbers in arithmatic progres...

    Text Solution

    |

  20. Let the roots of the equation 24 x ^(3) -14x ^(2) + kx +3=0 form a geo...

    Text Solution

    |

  21. How many ordered pair (s) satisfy log (x ^(3) + (1)/(3) y ^(3) + (1)/(...

    Text Solution

    |