Home
Class 12
MATHS
A person is to count 4500 currency notes...

A person is to count 4500 currency notes. Let an denote the number of notes he counts in the nth minute. If `a_1=""a_2="". . . . . .""=""a_(10)=""150` and `a_(10),""a_(11),"". . . . . .` are in A.P. with common difference -2, then the time taken by him to count all notes is (1) 34 minutes (2) 125 minutes (3) 135 minutes (4) 24 minutes

A

34 minutes

B

24 minutes

C

125 minutes

D

35 minutes

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|19 Videos
  • SEQUENCE AND SERIES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|16 Videos
  • QUADRATIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|45 Videos
  • SOLUTION OF TRIANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|11 Videos

Similar Questions

Explore conceptually related problems

A person is to count 4500 currency notes. Let a_n , denote the number of notes he counts in the nth minute if a_1=a_2=a_3=..........=a_10=150 and a_10,a_11,......... are in an AP with common difference -2 , then the time taken by him to count all notes is :- (1) 24 minutes 10 11 (2) 34 minutes (3) 125 minutes (4) 135 minutes

A cricketer has to score 4500 runs. Let a _(n) denotes the number of runs he scores in the n ^(th) match. If a _(1)=a_(2)= …. a _(10) =150 and a _(10) , a _(11), a_(12)…. are in A.P. with common difference (-2) . If N be the total number of matches played by him to scoere 4500 runs. Find the sum of the digits of N.

Let the sum of the first n terms of a non-constant A.P., a_(1), a_(2), a_(3),... " be " 50n + (n (n -7))/(2)A , where A is a constant. If d is the common difference of this A.P., then the ordered pair (d, a_(50)) is equal to

If a_1,a_2,a_3,…………..a_n are in A.P. whose common difference is d, show tht sum_2^ntan^-1 d/(1+a_(n-1)a_n)= tan^-1 ((a_n-a_1)/(1+a_na_1))

If a_(1), a_(2), a_(3),........, a_(n) ,... are in A.P. such that a_(4) - a_(7) + a_(10) = m , then the sum of first 13 terms of this A.P., is:

a_(1),a_(2),a_(3),a_(4),a_(5), are first five terms of an A.P. such that a_(1) +a_(3) +a_(5) = -12 and a_(1) .a_(2) . a_(3) =8 . Find the first term and the common difference.

Find the sum of first 24 terms of the A.P. a_1, a_2, a_3, , if it is know that a_1+a_5+a_(10)+a_(15)+a_(20)+a_(24)=225.

If a_1,a_2,a_3,…….a_n are in Arithmetic Progression, whose common difference is an integer such that a_1=1,a_n=300 and n in[15,50] then (S_(n-4),a_(n-4)) is

Find the sum of first 24 terms of the A.P. a_1,a_2, a_3 ......., if it is inown that a_1+a_5+a_(10)+a_(15)+a_(20)+a_(24)=225.

Let n in N . If (1 + x)^n = a_0 + a_1 x + a_2x^2+…. + a_nx^n and a_(n-3), a_(n-2) , a_(n-1) are in A.P then Statement - I : a_1, a_2, a_3 are in A.P. Statement -II : n = 7 The true statements are :

VIKAS GUPTA (BLACK BOOK) ENGLISH-SEQUENCE AND SERIES -EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. A person is to count 4500 currency notes. Let an denote the number o...

    Text Solution

    |

  2. Let a,b,c,d be four distinct real number in A.P.Then the smallest posi...

    Text Solution

    |

  3. The sum of all digits of n for which sum (r =1) ^(n ) r 2 ^(r ) = 2+2^...

    Text Solution

    |

  4. If lim ( n to oo) (r +2)/(2 ^(r+1) r (r+1))=1/k, then k =

    Text Solution

    |

  5. The value of sum (r =1) ^(oo) (8r)/(4r ^(4) +1) is equal to :

    Text Solution

    |

  6. If three non-zero distinct real numbers form an arithmatic progression...

    Text Solution

    |

  7. The sum of the fourth and twelfth term of an arithmetic progression is...

    Text Solution

    |

  8. In an increasing sequence of four positive integers, the first 3 terms...

    Text Solution

    |

  9. The limit of (1)/(n ^(4)) sum (k =1) ^(n) k (k +2) (k +4) as n to oo i...

    Text Solution

    |

  10. Which is the last digit of 1+2+3+……+ n if the last digit of 1 ^(3) + ...

    Text Solution

    |

  11. There distinct positive numbers, a,b,c are in G.P. while log (c) a, lo...

    Text Solution

    |

  12. The numbers 1/3, 1/3 log (x) y, 1/3 log (y) z, 1/7 log (x) x are in H...

    Text Solution

    |

  13. If sum ( k =1) ^(oo) (k^(2))/(3 ^(k))=p/q, where p and q are relativel...

    Text Solution

    |

  14. The sum of the terms of an infinitely decreassing Geometric Progressio...

    Text Solution

    |

  15. A cricketer has to score 4500 runs. Let a (n) denotes the number of ru...

    Text Solution

    |

  16. If x=10 sum(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] deno...

    Text Solution

    |

  17. Let f (n)=(4n + sqrt(4n ^(2) -1))/( sqrt(2n +1 )+sqrt(2n-1)),n in N th...

    Text Solution

    |

  18. Find the sum of series 1+1/2+1/3+1/4+1/6+1/8+1/9+1/12+…… oo, where the...

    Text Solution

    |

  19. Let a (1), a(2), a(3),…….., a(n) be real numbers in arithmatic progres...

    Text Solution

    |

  20. Let the roots of the equation 24 x ^(3) -14x ^(2) + kx +3=0 form a geo...

    Text Solution

    |

  21. How many ordered pair (s) satisfy log (x ^(3) + (1)/(3) y ^(3) + (1)/(...

    Text Solution

    |