Home
Class 12
MATHS
If a, b, c are positive numbers such tha...

If a, b, c are positive numbers such that `a^(log_(3)7) =27, b^(log_(7)11)=49, c^(log_(11)25)=sqrt(11)`, then the sum of digits of `S=a^((log_(3)7)^(2))+b^((log_(7)11)^(2))+c^((log_(11)25)^(2))` is :

A

15

B

17

C

19

D

21

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equations and manipulate them to find the required sum \( S \). ### Step 1: Solve for \( a \) Given: \[ a^{\log_3 7} = 27 \] We can express 27 as \( 3^3 \): \[ a^{\log_3 7} = 3^3 \] Taking logarithm base 3 on both sides: \[ \log_3 a \cdot \log_3 7 = 3 \] Thus, \[ \log_3 a = \frac{3}{\log_3 7} \] Now, we can express \( a \) as: \[ a = 3^{\frac{3}{\log_3 7}} = 3^{3 \cdot \frac{1}{\log_3 7}} = 3^{\log_7 27} \] ### Step 2: Solve for \( b \) Given: \[ b^{\log_7 11} = 49 \] We can express 49 as \( 7^2 \): \[ b^{\log_7 11} = 7^2 \] Taking logarithm base 7 on both sides: \[ \log_7 b \cdot \log_7 11 = 2 \] Thus, \[ \log_7 b = \frac{2}{\log_7 11} \] Now, we can express \( b \) as: \[ b = 7^{\frac{2}{\log_7 11}} = 7^{2 \cdot \frac{1}{\log_7 11}} = 7^{\log_{11} 49} \] ### Step 3: Solve for \( c \) Given: \[ c^{\log_{11} 25} = \sqrt{11} \] We can express \( \sqrt{11} \) as \( 11^{1/2} \): \[ c^{\log_{11} 25} = 11^{1/2} \] Taking logarithm base 11 on both sides: \[ \log_{11} c \cdot \log_{11} 25 = \frac{1}{2} \] Thus, \[ \log_{11} c = \frac{1/2}{\log_{11} 25} \] Now, we can express \( c \) as: \[ c = 11^{\frac{1/2}{\log_{11} 25}} = 11^{\frac{1}{2} \cdot \frac{1}{\log_{11} 25}} = 11^{\log_{25} \sqrt{11}} \] ### Step 4: Calculate \( S \) Now we need to calculate: \[ S = a^{(\log_3 7)^2} + b^{(\log_7 11)^2} + c^{(\log_{11} 25)^2} \] Substituting the values we found: 1. For \( a^{(\log_3 7)^2} \): \[ a^{(\log_3 7)^2} = (3^{\log_7 27})^{(\log_3 7)^2} = 27^{\log_3 7} \] 2. For \( b^{(\log_7 11)^2} \): \[ b^{(\log_7 11)^2} = (7^{\log_{11} 49})^{(\log_7 11)^2} = 49^{\log_7 11} \] 3. For \( c^{(\log_{11} 25)^2} \): \[ c^{(\log_{11} 25)^2} = (11^{\log_{25} \sqrt{11}})^{(\log_{11} 25)^2} = \sqrt{11}^{\log_{11} 25} \] Now substituting these into \( S \): \[ S = 27^{\log_3 7} + 49^{\log_7 11} + \sqrt{11}^{\log_{11} 25} \] Using the property \( x^{\log_y z} = z^{\log_y x} \): \[ S = 7^3 + 11^2 + 25^{1/2} \] Calculating each term: - \( 7^3 = 343 \) - \( 11^2 = 121 \) - \( 25^{1/2} = 5 \) Thus, \[ S = 343 + 121 + 5 = 469 \] ### Final Answer The sum of the digits of \( S = 469 \) is: \[ 4 + 6 + 9 = 19 \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|4 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|7 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|4 Videos

Similar Questions

Explore conceptually related problems

If a, b, c, are positive real numbers and log_(4) a=log_(6)b=log_(9) (a+b) , then b/a equals

If a, b, c are positive real numbers, then a^("log"b-"log"c) xx b^("log"c-"log"a) xx c^("log"a - "log"b)

The value of 2^("log"_(3)7) - 7^("log"_(3)2) is

Suppose that a and b are positive real numbers such that log_(27)a+log_9(b)=7/2 and log_(27)b+log_9a=2/3 .Then the value of the ab equals

The value of ((log_(2)9)^(2))^(1/(log_(2)(log_(2)9)))xx(sqrt7)^(1/(log_(4)7)) is ________.

If log_(y)x +log_(x)y = 7 , then the value of (log_(y)x)^(2) +(log_(x)y)^(2) , is

The value of (2^(log_(2^(1/4)) 2)-3^(log_27 125)-4)/((7^(4log_(49) 2))-3) is

Find the value of log_(2) (1/(7^(log_(7) 0.125))) .

Prove that: (log_9 11)/(log_5 3) = (log_3 11)/(log_sqrt(5) 3).

If log_(b)5=a,log_(b)2.5=c,and5^(x)=2.5 , then x=

VIKAS GUPTA (BLACK BOOK) ENGLISH-LOGARITHMS -Exercise-5 : Subjective Type Problems
  1. If a, b, c are positive numbers such that a^(log(3)7) =27, b^(log(7)1...

    Text Solution

    |

  2. The number N=6^(log(10)40). 5^(log(10)36) is a natural number ,Then su...

    Text Solution

    |

  3. The minimum value of 'c' such that log(b)(a^(log(2)b))=log(a)(b^(log(2...

    Text Solution

    |

  4. How many positive integers b have the property that log(b)729 is a pos...

    Text Solution

    |

  5. The number of negative integral values of x satisfying the inequality ...

    Text Solution

    |

  6. (6)/(5)a^((log(a)x)(log(10)a)(log(a)5))-3^(log(10)((x)/(10)))=9^(log(1...

    Text Solution

    |

  7. If log(5)((a+b)/(3))=(log(5)a+log(5)b)/(2),"then" (a^(4)+b^(4))/(a^(2...

    Text Solution

    |

  8. Let a , b , c , d be positive integers such that (log)a b=3/2a n d(log...

    Text Solution

    |

  9. The number of real values of x satisfying the equation log(10) sqrt(...

    Text Solution

    |

  10. The ordered pair (x,y) satisfying the equation x^(2)=1+6 log(4)y and...

    Text Solution

    |

  11. If log(7)log(7) sqrt(7sqrt(7sqrt(7)))=1-a log(7)2 and log(15)log(15) s...

    Text Solution

    |

  12. The number of ordered pair(s) of (x, y) satisfying the equations log...

    Text Solution

    |

  13. If log(b) n = 2 and og(n) 2b = 2, then find the value of b.

    Text Solution

    |

  14. If log(y) x + log(x) y = 2, x^(2)+y = 12 , then the value of xy is

    Text Solution

    |

  15. If x, y satisfy the equation, y^(x)=x^(y) and x=2y, then x^(2)+y^(2)=

    Text Solution

    |

  16. Find the number of real values of x satisfying the equation. log(2)(...

    Text Solution

    |

  17. If x(1), x(2)(x(1) gt x(2)) are the two solutions of the equation 3^...

    Text Solution

    |

  18. Find the number or real values of x satisfying the equation 9^(2log(9)...

    Text Solution

    |

  19. If log(16)(log(root(4)(3))(log(root(3)(5))(x)))=(1)/(2), find x.

    Text Solution

    |

  20. The value [(1)/(6)((2log(10)(1728))/(1+(1)/(2)log(10)(0.36)+(1)/(3)log...

    Text Solution

    |