Home
Class 12
MATHS
If 2^(a)=5, 5^(b)=8, 8^(c )=11 and 11^(...

If `2^(a)=5, 5^(b)=8, 8^(c )=11 and 11^(d)=14`, then the value of `2^(abcd)` is :

A

1

B

2

C

7

D

14

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( 2^{abcd} \) given the relationships: 1. \( 2^a = 5 \) 2. \( 5^b = 8 \) 3. \( 8^c = 11 \) 4. \( 11^d = 14 \) ### Step 1: Express \( a \) in terms of logarithms From the first equation, we can express \( a \) as: \[ a = \log_2(5) \] **Hint:** Use the definition of logarithms to express the exponent in terms of the base. ### Step 2: Express \( b \) in terms of logarithms From the second equation, we can express \( b \) as: \[ b = \log_5(8) \] **Hint:** Again, use the definition of logarithms to express \( b \). ### Step 3: Express \( c \) in terms of logarithms From the third equation, we can express \( c \) as: \[ c = \log_8(11) \] **Hint:** Use the logarithmic identity to express \( c \). ### Step 4: Express \( d \) in terms of logarithms From the fourth equation, we can express \( d \) as: \[ d = \log_{11}(14) \] **Hint:** Continue using the logarithmic definition to express \( d \). ### Step 5: Find \( abcd \) Now we can find \( abcd \): \[ abcd = \log_2(5) \cdot \log_5(8) \cdot \log_8(11) \cdot \log_{11}(14) \] Using the change of base formula, we can simplify this: \[ abcd = \frac{\log(5)}{\log(2)} \cdot \frac{\log(8)}{\log(5)} \cdot \frac{\log(11)}{\log(8)} \cdot \frac{\log(14)}{\log(11)} \] Notice that the terms will cancel out: \[ abcd = \frac{\log(14)}{\log(2)} \] **Hint:** Use the property of logarithms that allows cancellation of terms. ### Step 6: Calculate \( 2^{abcd} \) Now, we substitute \( abcd \) back into \( 2^{abcd} \): \[ 2^{abcd} = 2^{\frac{\log(14)}{\log(2)}} \] Using the property of exponents: \[ 2^{abcd} = 14 \] ### Final Answer Thus, the value of \( 2^{abcd} \) is: \[ \boxed{14} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|4 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|7 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|4 Videos

Similar Questions

Explore conceptually related problems

If a, b, c, d satisfy the equation a + 7b + 3c + 5d = 0 , 8a + 4b + 6c + 2d = - 16 , 2a + 6b + 4c + 8d =16 and 5a + 3b + 7c + d = -16 then the value of (a + d) (b + c) =______

If \ ^(k+5)P_(k+1)=(11(k-1))/2dot\ ^(k+3)P_(k\ )P_k then the values of k are 7\ a n d\ 11 b. 6\ a n d\ 7 c. 2\ a n d\ 11 d. 2\ a n d\ 6

The mean of 7,5,8,p and 11 is 8. Find the value of p.

If .^(n)P_(3)+.^(n)C_(n-2)=14n , the value of n is (a) 5 (b) 6 (c) 8 (d) 10

Consider an A.P. a_1, a_2, a_3,......... such that a_3+a_5+a_8=11 and a_4+a_2=-2, then the value of a_1+a_6+a_7 is (a). -8 (b). 5 (c). 7 (d). 9

The sum (7)/(2^2xx5^2)+13/(5^2xx8^2)+19/(8^2xx11^2)+…10 terms is S, then the value of 1024(S) is __________.

If the sum of the series 2, 5, 8, 11, ... is 60100, then find the value of ndot

If the points A(a ,\ -11),\ \ B(5,\ b),\ \ C(2,\ 15) and D(1,\ 1) are the vertices of a parallelogram A B C D , find the values of a and b .

If f(x)=sin^(-1)cosx , then the value of f(10)+f^(prime)(10) is (a) 11-(pi)/2 (b) (pi)/2-11 (c) (5pi)/2-11 (d) none of these

If different values of variable x are 9.8, 5.4 , 3.7 , 1.7 , 1.8 , 2.6 , 2.8 , 10.5 and 11.1 , find the value of sum(x - barx)

VIKAS GUPTA (BLACK BOOK) ENGLISH-LOGARITHMS -Exercise-5 : Subjective Type Problems
  1. If 2^(a)=5, 5^(b)=8, 8^(c )=11 and 11^(d)=14, then the value of 2^(a...

    Text Solution

    |

  2. The number N=6^(log(10)40). 5^(log(10)36) is a natural number ,Then su...

    Text Solution

    |

  3. The minimum value of 'c' such that log(b)(a^(log(2)b))=log(a)(b^(log(2...

    Text Solution

    |

  4. How many positive integers b have the property that log(b)729 is a pos...

    Text Solution

    |

  5. The number of negative integral values of x satisfying the inequality ...

    Text Solution

    |

  6. (6)/(5)a^((log(a)x)(log(10)a)(log(a)5))-3^(log(10)((x)/(10)))=9^(log(1...

    Text Solution

    |

  7. If log(5)((a+b)/(3))=(log(5)a+log(5)b)/(2),"then" (a^(4)+b^(4))/(a^(2...

    Text Solution

    |

  8. Let a , b , c , d be positive integers such that (log)a b=3/2a n d(log...

    Text Solution

    |

  9. The number of real values of x satisfying the equation log(10) sqrt(...

    Text Solution

    |

  10. The ordered pair (x,y) satisfying the equation x^(2)=1+6 log(4)y and...

    Text Solution

    |

  11. If log(7)log(7) sqrt(7sqrt(7sqrt(7)))=1-a log(7)2 and log(15)log(15) s...

    Text Solution

    |

  12. The number of ordered pair(s) of (x, y) satisfying the equations log...

    Text Solution

    |

  13. If log(b) n = 2 and og(n) 2b = 2, then find the value of b.

    Text Solution

    |

  14. If log(y) x + log(x) y = 2, x^(2)+y = 12 , then the value of xy is

    Text Solution

    |

  15. If x, y satisfy the equation, y^(x)=x^(y) and x=2y, then x^(2)+y^(2)=

    Text Solution

    |

  16. Find the number of real values of x satisfying the equation. log(2)(...

    Text Solution

    |

  17. If x(1), x(2)(x(1) gt x(2)) are the two solutions of the equation 3^...

    Text Solution

    |

  18. Find the number or real values of x satisfying the equation 9^(2log(9)...

    Text Solution

    |

  19. If log(16)(log(root(4)(3))(log(root(3)(5))(x)))=(1)/(2), find x.

    Text Solution

    |

  20. The value [(1)/(6)((2log(10)(1728))/(1+(1)/(2)log(10)(0.36)+(1)/(3)log...

    Text Solution

    |