Home
Class 12
MATHS
The value of log(8)17/(log(9)23)-log(2sq...

The value of `log_(8)17/(log_(9)23)-log_(2sqrt2)17/(log_(3)23)` is equal to

A

-1

B

0

C

`(log_(2)17)/(log_(3)23)`

D

`(4(log_(2)17))/(3(log_(3)23))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \frac{\log_{8} 17}{\log_{9} 23} - \frac{\log_{2\sqrt{2}} 17}{\log_{3} 23} \), we will use the change of base formula and properties of logarithms. ### Step 1: Rewrite the logarithms using the change of base formula Using the change of base formula, we can express the logarithms in terms of natural logarithms (or logarithms of any common base): \[ \log_{a} b = \frac{\log b}{\log a} \] Thus, we can rewrite the terms: \[ \log_{8} 17 = \frac{\log 17}{\log 8} = \frac{\log 17}{\log(2^3)} = \frac{\log 17}{3 \log 2} \] \[ \log_{9} 23 = \frac{\log 23}{\log 9} = \frac{\log 23}{\log(3^2)} = \frac{\log 23}{2 \log 3} \] \[ \log_{2\sqrt{2}} 17 = \frac{\log 17}{\log(2\sqrt{2})} = \frac{\log 17}{\log(2^{3/2})} = \frac{\log 17}{\frac{3}{2} \log 2} = \frac{2 \log 17}{3 \log 2} \] \[ \log_{3} 23 = \frac{\log 23}{\log 3} \] ### Step 2: Substitute these into the expression Now we substitute these values back into the original expression: \[ \frac{\frac{\log 17}{3 \log 2}}{\frac{\log 23}{2 \log 3}} - \frac{\frac{2 \log 17}{3 \log 2}}{\frac{\log 23}{\log 3}} \] ### Step 3: Simplify the fractions We simplify each term: 1. The first term becomes: \[ \frac{\log 17}{3 \log 2} \cdot \frac{2 \log 3}{\log 23} = \frac{2 \log 17 \log 3}{3 \log 2 \log 23} \] 2. The second term becomes: \[ \frac{2 \log 17}{3 \log 2} \cdot \frac{\log 3}{\log 23} = \frac{2 \log 17 \log 3}{3 \log 2 \log 23} \] ### Step 4: Combine the terms Now we combine the two terms: \[ \frac{2 \log 17 \log 3}{3 \log 2 \log 23} - \frac{2 \log 17 \log 3}{3 \log 2 \log 23} = 0 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|4 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|7 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|4 Videos

Similar Questions

Explore conceptually related problems

The value of ((log_(2)9)^(2))^(1/(log_(2)(log_(2)9)))xx(sqrt7)^(1/(log_(4)7)) is ________.

The value of 1-log_(e)2+(log_(e)2)^(2)/(2!)-(log_(e)2)^(3)/(3!)+.. is

log_(3sqrt(2))324

Find the value of (4/(log_(2)(2sqrt3))+2/(log_(3) (2sqrt3)))^(2) .

The number of real solution(s) of the equation 9^(log_(3)(log_(e )x))=log_(e )x-(log_(e )x)^(2)+1 is equal to

Find the value of log_(5) log_(2)log_(3) log_(2) 512 .

The value of log_(3) e- log_(9) e + log_(27) e- log_(81) e+…infty is

The value of "log"_(2)"log"_(2)"log"_(4) 256 + 2 "log"_(sqrt(2))2 , is

The value of (log_(10)2)^(3)+log_(10)8 * log_(10) 5 + (log_(10)5)^(3) is _______.

The value of ((1)/(sqrt(27)))^(2-((log_(5)16)/(2log_(5)9))) equal to :

VIKAS GUPTA (BLACK BOOK) ENGLISH-LOGARITHMS -Exercise-5 : Subjective Type Problems
  1. The value of log(8)17/(log(9)23)-log(2sqrt2)17/(log(3)23) is equal to

    Text Solution

    |

  2. The number N=6^(log(10)40). 5^(log(10)36) is a natural number ,Then su...

    Text Solution

    |

  3. The minimum value of 'c' such that log(b)(a^(log(2)b))=log(a)(b^(log(2...

    Text Solution

    |

  4. How many positive integers b have the property that log(b)729 is a pos...

    Text Solution

    |

  5. The number of negative integral values of x satisfying the inequality ...

    Text Solution

    |

  6. (6)/(5)a^((log(a)x)(log(10)a)(log(a)5))-3^(log(10)((x)/(10)))=9^(log(1...

    Text Solution

    |

  7. If log(5)((a+b)/(3))=(log(5)a+log(5)b)/(2),"then" (a^(4)+b^(4))/(a^(2...

    Text Solution

    |

  8. Let a , b , c , d be positive integers such that (log)a b=3/2a n d(log...

    Text Solution

    |

  9. The number of real values of x satisfying the equation log(10) sqrt(...

    Text Solution

    |

  10. The ordered pair (x,y) satisfying the equation x^(2)=1+6 log(4)y and...

    Text Solution

    |

  11. If log(7)log(7) sqrt(7sqrt(7sqrt(7)))=1-a log(7)2 and log(15)log(15) s...

    Text Solution

    |

  12. The number of ordered pair(s) of (x, y) satisfying the equations log...

    Text Solution

    |

  13. If log(b) n = 2 and og(n) 2b = 2, then find the value of b.

    Text Solution

    |

  14. If log(y) x + log(x) y = 2, x^(2)+y = 12 , then the value of xy is

    Text Solution

    |

  15. If x, y satisfy the equation, y^(x)=x^(y) and x=2y, then x^(2)+y^(2)=

    Text Solution

    |

  16. Find the number of real values of x satisfying the equation. log(2)(...

    Text Solution

    |

  17. If x(1), x(2)(x(1) gt x(2)) are the two solutions of the equation 3^...

    Text Solution

    |

  18. Find the number or real values of x satisfying the equation 9^(2log(9)...

    Text Solution

    |

  19. If log(16)(log(root(4)(3))(log(root(3)(5))(x)))=(1)/(2), find x.

    Text Solution

    |

  20. The value [(1)/(6)((2log(10)(1728))/(1+(1)/(2)log(10)(0.36)+(1)/(3)log...

    Text Solution

    |