Home
Class 12
MATHS
log(2)[log(4)(log(10)16^(4)+log(10)25^(8...

`log_(2)[log_(4)(log_(10)16^(4)+log_(10)25^(8))]` simplifies to :

A

an irrational

B

an odd prime

C

a composite

D

unity

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \log_{2}\left[\log_{4}\left(\log_{10}(16^{4}) + \log_{10}(25^{8})\right)\right] \), we will follow these steps: ### Step 1: Simplify the logarithmic terms inside We start with the expression inside the logarithm: \[ \log_{10}(16^{4}) + \log_{10}(25^{8}) \] Using the property of logarithms \( \log_{a}(b^{c}) = c \cdot \log_{a}(b) \): \[ \log_{10}(16^{4}) = 4 \cdot \log_{10}(16) \quad \text{and} \quad \log_{10}(25^{8}) = 8 \cdot \log_{10}(25) \] Now, we know that \( 16 = 2^{4} \) and \( 25 = 5^{2} \): \[ \log_{10}(16) = \log_{10}(2^{4}) = 4 \cdot \log_{10}(2) \quad \text{and} \quad \log_{10}(25) = \log_{10}(5^{2}) = 2 \cdot \log_{10}(5) \] Substituting these back, we get: \[ \log_{10}(16^{4}) = 4 \cdot (4 \cdot \log_{10}(2)) = 16 \cdot \log_{10}(2) \] \[ \log_{10}(25^{8}) = 8 \cdot (2 \cdot \log_{10}(5)) = 16 \cdot \log_{10}(5) \] Thus, we can combine these: \[ \log_{10}(16^{4}) + \log_{10}(25^{8}) = 16 \cdot \log_{10}(2) + 16 \cdot \log_{10}(5) = 16(\log_{10}(2) + \log_{10}(5)) \] Using the property \( \log_{a}(b) + \log_{a}(c) = \log_{a}(bc) \): \[ \log_{10}(2) + \log_{10}(5) = \log_{10}(10) = 1 \] So, we have: \[ \log_{10}(16^{4}) + \log_{10}(25^{8}) = 16 \cdot 1 = 16 \] ### Step 2: Substitute back into the logarithmic expression Now we substitute this back into the original expression: \[ \log_{2}\left[\log_{4}(16)\right] \] ### Step 3: Simplify \( \log_{4}(16) \) Next, we simplify \( \log_{4}(16) \): We know that \( 16 = 4^{2} \), so: \[ \log_{4}(16) = \log_{4}(4^{2}) = 2 \] ### Step 4: Substitute and simplify \( \log_{2}(2) \) Now we substitute this back into the expression: \[ \log_{2}(2) \] Using the property \( \log_{a}(a) = 1 \): \[ \log_{2}(2) = 1 \] ### Final Result Thus, the entire expression simplifies to: \[ \log_{2}\left[\log_{4}\left(\log_{10}(16^{4}) + \log_{10}(25^{8})\right)\right] = 1 \] ### Conclusion The final answer is \( 1 \), which corresponds to the option "unity". ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|4 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|7 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|4 Videos

Similar Questions

Explore conceptually related problems

log_(10)(log_(2)3) + log_(10)(log_(3)4) + …………+log_(10)(log_(1023)1024) simplies to

log_(4)2-log_(8)2+log_(16)2-....=

The value of (log_(10)2)^(3)+log_(10)8 * log_(10) 5 + (log_(10)5)^(3) is _______.

Given (log _(10 ) ^(16))/(log _(10 ) ^(2)) = log _(10 ) ^(a) find the value of ( a+ 100) .

Solution set of the in equality log_(10^(2)) x-3(log_(10)x)( log_(10)(x-2))+2 log_(10^(2))(x-2) lt 0 , is :

The value of (log_(10)2)^3+log_(10)8log_(10)5+(log_(10)5)^3 is ............

If log_(2)(log_(4)(x))) = 0, log_(3)(log_(4)(log_(2)(y))) = 0 and log_(4)(log_(2)(log_(3)(z))) = 0 then the sum of x,y and z is-

((log_(100)10)(log_(2)(log_(4)2))(log_(4)log_(2)^(2)(256)^(2)))/(log_(4)8+log_(8)4)=

((log_(100)10)(log_(2)(log_(4)2))(log_(4)log_((2)^(2))(256)^(2)))/(log_(4)8+log_(8)4)=

Evaluate each of the following without using tables : (i) log 5 + log 8 - 2 log 2 (ii) log_(10) 8 + log_(10) 25 + 2 log_(10)3 - log_(10) 18 (iii) log 4 + (1)/(3) log 125 - (1)/(5) log 32

VIKAS GUPTA (BLACK BOOK) ENGLISH-LOGARITHMS -Exercise-5 : Subjective Type Problems
  1. log(2)[log(4)(log(10)16^(4)+log(10)25^(8))] simplifies to :

    Text Solution

    |

  2. The number N=6^(log(10)40). 5^(log(10)36) is a natural number ,Then su...

    Text Solution

    |

  3. The minimum value of 'c' such that log(b)(a^(log(2)b))=log(a)(b^(log(2...

    Text Solution

    |

  4. How many positive integers b have the property that log(b)729 is a pos...

    Text Solution

    |

  5. The number of negative integral values of x satisfying the inequality ...

    Text Solution

    |

  6. (6)/(5)a^((log(a)x)(log(10)a)(log(a)5))-3^(log(10)((x)/(10)))=9^(log(1...

    Text Solution

    |

  7. If log(5)((a+b)/(3))=(log(5)a+log(5)b)/(2),"then" (a^(4)+b^(4))/(a^(2...

    Text Solution

    |

  8. Let a , b , c , d be positive integers such that (log)a b=3/2a n d(log...

    Text Solution

    |

  9. The number of real values of x satisfying the equation log(10) sqrt(...

    Text Solution

    |

  10. The ordered pair (x,y) satisfying the equation x^(2)=1+6 log(4)y and...

    Text Solution

    |

  11. If log(7)log(7) sqrt(7sqrt(7sqrt(7)))=1-a log(7)2 and log(15)log(15) s...

    Text Solution

    |

  12. The number of ordered pair(s) of (x, y) satisfying the equations log...

    Text Solution

    |

  13. If log(b) n = 2 and og(n) 2b = 2, then find the value of b.

    Text Solution

    |

  14. If log(y) x + log(x) y = 2, x^(2)+y = 12 , then the value of xy is

    Text Solution

    |

  15. If x, y satisfy the equation, y^(x)=x^(y) and x=2y, then x^(2)+y^(2)=

    Text Solution

    |

  16. Find the number of real values of x satisfying the equation. log(2)(...

    Text Solution

    |

  17. If x(1), x(2)(x(1) gt x(2)) are the two solutions of the equation 3^...

    Text Solution

    |

  18. Find the number or real values of x satisfying the equation 9^(2log(9)...

    Text Solution

    |

  19. If log(16)(log(root(4)(3))(log(root(3)(5))(x)))=(1)/(2), find x.

    Text Solution

    |

  20. The value [(1)/(6)((2log(10)(1728))/(1+(1)/(2)log(10)(0.36)+(1)/(3)log...

    Text Solution

    |