Home
Class 12
MATHS
sqrt(2^x(4^x(0. 125)^(1/ x))^(1/3))=4.(2...

`sqrt(2^x(4^x(0. 125)^(1/ x))^(1/3))=4.(2^(1/3))`

A

`(14)/(5)`

B

3

C

`-(1)/(5)`

D

`-(3)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt{2^x (4^x (0.125)^{(1/x)})^{(1/3)}} = 4 \cdot (2^{1/3}) \), we will follow these steps: ### Step 1: Rewrite the equation First, we rewrite \( 4^x \) and \( 0.125 \) in terms of base 2: - \( 4^x = (2^2)^x = 2^{2x} \) - \( 0.125 = \frac{1}{8} = \frac{1}{2^3} = 2^{-3} \) Thus, we can rewrite the equation as: \[ \sqrt{2^x \left(2^{2x} \left(2^{-3}\right)^{(1/x)}\right)^{(1/3)}} = 4 \cdot (2^{1/3}) \] ### Step 2: Simplify the left side Now, simplify the left side: \[ \sqrt{2^x \left(2^{2x} \cdot 2^{-3/x}\right)^{(1/3)}} \] Combine the exponents inside the square root: \[ = \sqrt{2^x \cdot 2^{(2x - 3/x)/3}} = \sqrt{2^{x + (2x - 3/x)/3}} \] ### Step 3: Combine exponents The exponent can be combined: \[ = \sqrt{2^{\frac{3x + 2x - 3/x}{3}}} = \sqrt{2^{\frac{5x - 3/x}{3}}} \] ### Step 4: Apply the square root Using the property of square roots: \[ = 2^{\frac{5x - 3/x}{6}} \] ### Step 5: Simplify the right side Now simplify the right side: \[ 4 \cdot (2^{1/3}) = 2^2 \cdot 2^{1/3} = 2^{2 + 1/3} = 2^{\frac{6}{3} + \frac{1}{3}} = 2^{\frac{7}{3}} \] ### Step 6: Set the exponents equal Now we can set the exponents equal to each other: \[ \frac{5x - 3/x}{6} = \frac{7}{3} \] ### Step 7: Clear the fraction Multiply both sides by 6: \[ 5x - \frac{3}{x} = 14 \] ### Step 8: Rearrange the equation Rearranging gives: \[ 5x - 14 - \frac{3}{x} = 0 \] ### Step 9: Multiply through by \( x \) To eliminate the fraction, multiply through by \( x \): \[ 5x^2 - 14x - 3 = 0 \] ### Step 10: Solve the quadratic equation Now we can use the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): - Here, \( a = 5 \), \( b = -14 \), and \( c = -3 \). Calculating the discriminant: \[ b^2 - 4ac = (-14)^2 - 4 \cdot 5 \cdot (-3) = 196 + 60 = 256 \] Now substituting into the formula: \[ x = \frac{14 \pm \sqrt{256}}{10} = \frac{14 \pm 16}{10} \] ### Step 11: Find the values of \( x \) Calculating the two possible values: 1. \( x = \frac{30}{10} = 3 \) 2. \( x = \frac{-2}{10} = -0.2 \) ### Final Solution Thus, the solutions are: \[ x = 3 \quad \text{and} \quad x = -0.2 \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|4 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|7 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|4 Videos

Similar Questions

Explore conceptually related problems

lim_(x->a){[(a^(1/2)+x^(1/2))/(a^(1/4)-x^(1/4)))^(- 1)-(2(a x)^(1/4))/(x^(3/4)-a^(1/4)x^(1/2)+a^(1/2)x^(1/4)-a^(3/4))]^(- 1)-sqrt2^(log_4 a)}^8

A : (1)/(2)-(1)/(2).(1)/(2^(2))+(1)/(3).(1)/(2^(3))-(1)/(4).(1)/(2^(4))+....=log_(e)((3)/(2)) R : log_(e)(1+x)=x-(x^(2))/(2)+(x^(3))/(3)-(x^(4))/(4)+...

(lim)_(xvecoo)(2. x^(1//2)+3. x^(1//3)+4. x^(1//4)++ndotx^(1//n))/((3x-4)^(1//2)+(3x-4)^(1-3)+(3x-4^)^(1//3)++(3x-4)^(1//n)) (here n in N ,ngeq2 ) is equal to 1 dot2/(sqrt(3)) 2. (sqrt(3))/2 3. 1/2 4. 1/(sqrt(3)) 5. 2

intdx/((x-1)^(3/4)(x+2)^(5/4))= (A) 4/3((x-1)/(x+2))^(1/4)+c (B) 4/3sqrt((x-1)/(x+2))+c (C) 4/3((x+2)/(x-1))^(1/4)+c (D) none of these

If x=(7+5sqrt(2))^(1/3)-1/((7+5sqrt(2))^(1/3)) , then the value of x^3+3x-14 is equal to 1 b. 0 c. 2 d. 4

int (x^(2)-1)/(x^(3)sqrt(2x^(4)-2x^(2)+1))dx=

The value of int_(-(pi/4)^(1/3))^((pi/4)^(1/3))(x^2)/((1+sin^2x^3)(1+e^(x^7)))dxi s (a) 1/3tan^(-1)sqrt(2) (b) 1/(3sqrt(2))tan^(-1)sqrt(2) (c) int_0^(pi/4)(sec^2dx)/(sec^2x+tan^2x) (d) 1/3int_0^(pi/4)(sec^2x dx)/(sec^2x+tan^2x)

If x ne 0 and x + (1)/(x) = 2 , then show that: x^(2)+ (1)/(x^(2))= x^(3) + (1)/(x^(3)) = x^(4) + (1)/(x^(4))

If sqrt((2x^(2)+x+2)/(x^(2)+3x+1))+2"."sqrt((x^(2)+3x+1)/(2x^(2)+x+2))-3=0 , find x.

Evaluate lim_(x to 0) (sqrt(1+x^(3))-sqrt(1-x^(3)))/(x^(2))

VIKAS GUPTA (BLACK BOOK) ENGLISH-LOGARITHMS -Exercise-5 : Subjective Type Problems
  1. sqrt(2^x(4^x(0. 125)^(1/ x))^(1/3))=4.(2^(1/3))

    Text Solution

    |

  2. The number N=6^(log(10)40). 5^(log(10)36) is a natural number ,Then su...

    Text Solution

    |

  3. The minimum value of 'c' such that log(b)(a^(log(2)b))=log(a)(b^(log(2...

    Text Solution

    |

  4. How many positive integers b have the property that log(b)729 is a pos...

    Text Solution

    |

  5. The number of negative integral values of x satisfying the inequality ...

    Text Solution

    |

  6. (6)/(5)a^((log(a)x)(log(10)a)(log(a)5))-3^(log(10)((x)/(10)))=9^(log(1...

    Text Solution

    |

  7. If log(5)((a+b)/(3))=(log(5)a+log(5)b)/(2),"then" (a^(4)+b^(4))/(a^(2...

    Text Solution

    |

  8. Let a , b , c , d be positive integers such that (log)a b=3/2a n d(log...

    Text Solution

    |

  9. The number of real values of x satisfying the equation log(10) sqrt(...

    Text Solution

    |

  10. The ordered pair (x,y) satisfying the equation x^(2)=1+6 log(4)y and...

    Text Solution

    |

  11. If log(7)log(7) sqrt(7sqrt(7sqrt(7)))=1-a log(7)2 and log(15)log(15) s...

    Text Solution

    |

  12. The number of ordered pair(s) of (x, y) satisfying the equations log...

    Text Solution

    |

  13. If log(b) n = 2 and og(n) 2b = 2, then find the value of b.

    Text Solution

    |

  14. If log(y) x + log(x) y = 2, x^(2)+y = 12 , then the value of xy is

    Text Solution

    |

  15. If x, y satisfy the equation, y^(x)=x^(y) and x=2y, then x^(2)+y^(2)=

    Text Solution

    |

  16. Find the number of real values of x satisfying the equation. log(2)(...

    Text Solution

    |

  17. If x(1), x(2)(x(1) gt x(2)) are the two solutions of the equation 3^...

    Text Solution

    |

  18. Find the number or real values of x satisfying the equation 9^(2log(9)...

    Text Solution

    |

  19. If log(16)(log(root(4)(3))(log(root(3)(5))(x)))=(1)/(2), find x.

    Text Solution

    |

  20. The value [(1)/(6)((2log(10)(1728))/(1+(1)/(2)log(10)(0.36)+(1)/(3)log...

    Text Solution

    |