Home
Class 12
MATHS
Let n in N, f(n)={(log(8)n" if "log(8)n ...

Let `n in N, f(n)={(log_(8)n" if "log_(8)n " is integer"),(0" otherwise"):}`, then the valud of `sum_(n=1)^(2011) f(n)` is :

A

2011

B

`2011xx1006`

C

6

D

`2^(2011)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( f(n) \) defined as: \[ f(n) = \begin{cases} \log_8 n & \text{if } \log_8 n \text{ is an integer} \\ 0 & \text{otherwise} \end{cases} \] We want to find the value of \( \sum_{n=1}^{2011} f(n) \). ### Step 1: Determine when \( \log_8 n \) is an integer The logarithm \( \log_8 n \) is an integer if and only if \( n \) can be expressed as \( n = 8^k \) for some integer \( k \). Since \( 8 = 2^3 \), we can rewrite this as: \[ n = 2^{3k} \] for \( k \in \mathbb{N} \). ### Step 2: Identify the values of \( n \) that satisfy this condition We need to find the values of \( n \) that are of the form \( 2^{3k} \) and also less than or equal to 2011. Calculating the maximum \( k \): \[ 2^{3k} \leq 2011 \implies 3k \leq \log_2(2011) \implies k \leq \frac{\log_2(2011)}{3} \] Calculating \( \log_2(2011) \): Using a calculator or logarithm tables, we find: \[ \log_2(2011) \approx 11.0 \implies k \leq \frac{11.0}{3} \approx 3.67 \] Thus, \( k \) can take the integer values \( 0, 1, 2, 3 \). ### Step 3: Calculate the corresponding values of \( n \) Now we calculate \( n \) for \( k = 0, 1, 2, 3 \): - For \( k = 0 \): \( n = 2^{3 \cdot 0} = 1 \) - For \( k = 1 \): \( n = 2^{3 \cdot 1} = 8 \) - For \( k = 2 \): \( n = 2^{3 \cdot 2} = 64 \) - For \( k = 3 \): \( n = 2^{3 \cdot 3} = 512 \) ### Step 4: Calculate \( f(n) \) for these values Now we evaluate \( f(n) \) for each of these values: - \( f(1) = \log_8(1) = 0 \) - \( f(8) = \log_8(8) = 1 \) - \( f(64) = \log_8(64) = 2 \) - \( f(512) = \log_8(512) = 3 \) ### Step 5: Sum the values of \( f(n) \) Now we sum these values: \[ \sum_{n=1}^{2011} f(n) = f(1) + f(8) + f(64) + f(512) = 0 + 1 + 2 + 3 = 6 \] ### Final Answer Thus, the value of \( \sum_{n=1}^{2011} f(n) \) is \( \boxed{6} \).
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|4 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|7 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|4 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

Let f(n) = [1/2 + n/100] where [x] denote the integral part of x. Then the value of sum_(n=1)^100 f(n) is

If n=1999! then sum_(x=1)^(1999) log_n x=

sum_(n=0)^(oo) ((log_ex)^n)/(n!)

Let sum_(r=1)^(n) r^(6)=f(n)," then "sum_(n=1)^(n) (2r-1)^(6) is equal to

If n is a positive integer then int_(0)^(1)(ln x)^(n)dx is :

Coefficient of n^(-r) in the expansion of log_(10)((n)/(n-1)) is

If f(n) = [(1)/(3)+(n)/(100)] , where [.] denotes G.I.F then sum_(n=1)^(200)f(n) is equal to

The coeffiecent of n^(-r) in the expansion of log_(10)((n)/(n-1)) is

let N =(log_(3) 135/log_(15) 3) - (log_(3) 5/log_(405) 3) , then N equals

VIKAS GUPTA (BLACK BOOK) ENGLISH-LOGARITHMS -Exercise-5 : Subjective Type Problems
  1. Let n in N, f(n)={(log(8)n" if "log(8)n " is integer"),(0" ...

    Text Solution

    |

  2. The number N=6^(log(10)40). 5^(log(10)36) is a natural number ,Then su...

    Text Solution

    |

  3. The minimum value of 'c' such that log(b)(a^(log(2)b))=log(a)(b^(log(2...

    Text Solution

    |

  4. How many positive integers b have the property that log(b)729 is a pos...

    Text Solution

    |

  5. The number of negative integral values of x satisfying the inequality ...

    Text Solution

    |

  6. (6)/(5)a^((log(a)x)(log(10)a)(log(a)5))-3^(log(10)((x)/(10)))=9^(log(1...

    Text Solution

    |

  7. If log(5)((a+b)/(3))=(log(5)a+log(5)b)/(2),"then" (a^(4)+b^(4))/(a^(2...

    Text Solution

    |

  8. Let a , b , c , d be positive integers such that (log)a b=3/2a n d(log...

    Text Solution

    |

  9. The number of real values of x satisfying the equation log(10) sqrt(...

    Text Solution

    |

  10. The ordered pair (x,y) satisfying the equation x^(2)=1+6 log(4)y and...

    Text Solution

    |

  11. If log(7)log(7) sqrt(7sqrt(7sqrt(7)))=1-a log(7)2 and log(15)log(15) s...

    Text Solution

    |

  12. The number of ordered pair(s) of (x, y) satisfying the equations log...

    Text Solution

    |

  13. If log(b) n = 2 and og(n) 2b = 2, then find the value of b.

    Text Solution

    |

  14. If log(y) x + log(x) y = 2, x^(2)+y = 12 , then the value of xy is

    Text Solution

    |

  15. If x, y satisfy the equation, y^(x)=x^(y) and x=2y, then x^(2)+y^(2)=

    Text Solution

    |

  16. Find the number of real values of x satisfying the equation. log(2)(...

    Text Solution

    |

  17. If x(1), x(2)(x(1) gt x(2)) are the two solutions of the equation 3^...

    Text Solution

    |

  18. Find the number or real values of x satisfying the equation 9^(2log(9)...

    Text Solution

    |

  19. If log(16)(log(root(4)(3))(log(root(3)(5))(x)))=(1)/(2), find x.

    Text Solution

    |

  20. The value [(1)/(6)((2log(10)(1728))/(1+(1)/(2)log(10)(0.36)+(1)/(3)log...

    Text Solution

    |