Home
Class 12
MATHS
Let 1 le x le 256 and M be the maximum v...

Let `1 le x le 256` and M be the maximum value of `(log_(2)x)^(4)+16(log_(2)x)^(2)log_(2)((16)/(x))`. The sum of the digits of M is :

A

9

B

11

C

13

D

15

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum value of the expression: \[ M = (\log_2 x)^4 + 16 (\log_2 x)^2 \log_2 \left(\frac{16}{x}\right) \] where \(1 \leq x \leq 256\). ### Step 1: Rewrite the expression We can rewrite \(\log_2 \left(\frac{16}{x}\right)\) using the properties of logarithms: \[ \log_2 \left(\frac{16}{x}\right) = \log_2 16 - \log_2 x = 4 - \log_2 x \] Substituting this back into \(M\): \[ M = (\log_2 x)^4 + 16 (\log_2 x)^2 (4 - \log_2 x) \] ### Step 2: Simplify the expression Let \(t = \log_2 x\). Then we can rewrite \(M\) as: \[ M = t^4 + 16 t^2 (4 - t) \] Expanding this gives: \[ M = t^4 + 64 t^2 - 16 t^3 \] ### Step 3: Rearrange the expression Rearranging the expression, we have: \[ M = t^4 - 16 t^3 + 64 t^2 \] ### Step 4: Find the critical points To find the maximum value, we take the derivative of \(M\) with respect to \(t\) and set it to zero: \[ \frac{dM}{dt} = 4t^3 - 48t^2 + 128t \] Setting the derivative equal to zero: \[ 4t^3 - 48t^2 + 128t = 0 \] Factoring out \(4t\): \[ 4t(t^2 - 12t + 32) = 0 \] This gives us \(t = 0\) or solving the quadratic \(t^2 - 12t + 32 = 0\). ### Step 5: Solve the quadratic equation Using the quadratic formula: \[ t = \frac{12 \pm \sqrt{(-12)^2 - 4 \cdot 1 \cdot 32}}{2 \cdot 1} = \frac{12 \pm \sqrt{144 - 128}}{2} = \frac{12 \pm \sqrt{16}}{2} = \frac{12 \pm 4}{2} \] Thus, we have: \[ t = \frac{16}{2} = 8 \quad \text{and} \quad t = \frac{8}{2} = 4 \] ### Step 6: Evaluate \(M\) at critical points We need to evaluate \(M\) at \(t = 0\), \(t = 4\), and \(t = 8\). 1. For \(t = 0\): \[ M(0) = 0^4 - 16 \cdot 0^3 + 64 \cdot 0^2 = 0 \] 2. For \(t = 4\): \[ M(4) = 4^4 - 16 \cdot 4^3 + 64 \cdot 4^2 = 256 - 1024 + 1024 = 256 \] 3. For \(t = 8\): \[ M(8) = 8^4 - 16 \cdot 8^3 + 64 \cdot 8^2 = 4096 - 8192 + 4096 = 0 \] ### Step 7: Determine the maximum value The maximum value of \(M\) occurs at \(t = 4\) and is: \[ M = 256 \] ### Step 8: Find the sum of the digits of \(M\) Now, we find the sum of the digits of \(256\): \[ 2 + 5 + 6 = 13 \] ### Final Answer The sum of the digits of \(M\) is: \[ \boxed{13} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|4 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|7 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|4 Videos

Similar Questions

Explore conceptually related problems

Solve : log_(2)(4-x)=4-log_(2)(-2-x)

Solve : log_(x^(2)16+log_(2x)64=3 .

If 0 le a le x , then the minimum value of "log"_(a) x + "log"_(x) x is

Solve for x: log_(2)x le 2/(log_(2)x-1)

The value of 1+(log_(e)x)+(log_(e)x)^(2)/(2!)+(log_(e)x)^(3)/(3!)+…infty

Solve log_(2)((4)/(x+3))>log_(2)(2-x)

The value of x, log_(1/2)x >= log_(1/3)x is

If log_(y)x +log_(x)y = 7 , then the value of (log_(y)x)^(2) +(log_(x)y)^(2) , is

If log_(2)(log_(2)(log_(2)x))=2 , then the number of digits in x, is (log_(10)2=0.3010)

53, Solution set of log_x 2.log_(2x)2=log_(4x) 2 is

VIKAS GUPTA (BLACK BOOK) ENGLISH-LOGARITHMS -Exercise-5 : Subjective Type Problems
  1. Let 1 le x le 256 and M be the maximum value of (log(2)x)^(4)+16(log(2...

    Text Solution

    |

  2. The number N=6^(log(10)40). 5^(log(10)36) is a natural number ,Then su...

    Text Solution

    |

  3. The minimum value of 'c' such that log(b)(a^(log(2)b))=log(a)(b^(log(2...

    Text Solution

    |

  4. How many positive integers b have the property that log(b)729 is a pos...

    Text Solution

    |

  5. The number of negative integral values of x satisfying the inequality ...

    Text Solution

    |

  6. (6)/(5)a^((log(a)x)(log(10)a)(log(a)5))-3^(log(10)((x)/(10)))=9^(log(1...

    Text Solution

    |

  7. If log(5)((a+b)/(3))=(log(5)a+log(5)b)/(2),"then" (a^(4)+b^(4))/(a^(2...

    Text Solution

    |

  8. Let a , b , c , d be positive integers such that (log)a b=3/2a n d(log...

    Text Solution

    |

  9. The number of real values of x satisfying the equation log(10) sqrt(...

    Text Solution

    |

  10. The ordered pair (x,y) satisfying the equation x^(2)=1+6 log(4)y and...

    Text Solution

    |

  11. If log(7)log(7) sqrt(7sqrt(7sqrt(7)))=1-a log(7)2 and log(15)log(15) s...

    Text Solution

    |

  12. The number of ordered pair(s) of (x, y) satisfying the equations log...

    Text Solution

    |

  13. If log(b) n = 2 and og(n) 2b = 2, then find the value of b.

    Text Solution

    |

  14. If log(y) x + log(x) y = 2, x^(2)+y = 12 , then the value of xy is

    Text Solution

    |

  15. If x, y satisfy the equation, y^(x)=x^(y) and x=2y, then x^(2)+y^(2)=

    Text Solution

    |

  16. Find the number of real values of x satisfying the equation. log(2)(...

    Text Solution

    |

  17. If x(1), x(2)(x(1) gt x(2)) are the two solutions of the equation 3^...

    Text Solution

    |

  18. Find the number or real values of x satisfying the equation 9^(2log(9)...

    Text Solution

    |

  19. If log(16)(log(root(4)(3))(log(root(3)(5))(x)))=(1)/(2), find x.

    Text Solution

    |

  20. The value [(1)/(6)((2log(10)(1728))/(1+(1)/(2)log(10)(0.36)+(1)/(3)log...

    Text Solution

    |