Home
Class 12
MATHS
If x=log5(1000) and y=log7(2058),then...

If `x=log_5(1000)` and `y=log_7(2058)`,then

A

`x gt y`

B

`x lt y`

C

`x=y`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( x \) and \( y \) given by: 1. \( x = \log_5(1000) \) 2. \( y = \log_7(2058) \) ### Step-by-Step Solution: **Step 1: Calculate \( x = \log_5(1000) \)** We can use the change of base formula for logarithms: \[ \log_b(a) = \frac{\log_k(a)}{\log_k(b)} \] where \( k \) can be any positive number. Here, we will use base 10. Thus, we can write: \[ x = \log_5(1000) = \frac{\log_{10}(1000)}{\log_{10}(5)} \] **Step 2: Simplify \( \log_{10}(1000) \)** Since \( 1000 = 10^3 \), we have: \[ \log_{10}(1000) = 3 \] **Step 3: Find \( \log_{10}(5) \)** Using a calculator or logarithm table, we find: \[ \log_{10}(5) \approx 0.699 \] **Step 4: Substitute back to find \( x \)** Now substituting back, we get: \[ x = \frac{3}{\log_{10}(5)} = \frac{3}{0.699} \approx 4.29 \] **Step 5: Calculate \( y = \log_7(2058) \)** Using the change of base formula again: \[ y = \log_7(2058) = \frac{\log_{10}(2058)}{\log_{10}(7)} \] **Step 6: Find \( \log_{10}(2058) \)** Using a calculator, we find: \[ \log_{10}(2058) \approx 3.313 \] **Step 7: Find \( \log_{10}(7) \)** Using a calculator or logarithm table, we find: \[ \log_{10}(7) \approx 0.845 \] **Step 8: Substitute back to find \( y \)** Now substituting back, we get: \[ y = \frac{3.313}{0.845} \approx 3.92 \] **Step 9: Compare \( x \) and \( y \)** Now we have: - \( x \approx 4.29 \) - \( y \approx 3.92 \) Since \( x > y \), we conclude that: \[ x > y \] ### Final Answer: Thus, \( x \) is greater than \( y \). ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|4 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|7 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|4 Videos

Similar Questions

Explore conceptually related problems

Given system of simultaneous equations 2^x\ . 5^y=1\ a n d\ 5^(x+1). 2^y=2. Then - (a) . x=(log)_(10)5\ a n d\ y=(log)_(10)2 (b) . x=(log)_(10)2\ a n d\ y=(log)_(10)5 (c) . x=(log)_(10)(1/5)\ a n d\ y=(log)_(10)2 (d) . x=(log)_(10)5\ a n d\ y=(log)_(10)(1/2)

If log_(a)5=x and log_(a)7=y , then log_(a)sqrt(1,4)=

If log_(4)5 = x and log_(5)6 = y then

If x = "log"_(2) 3 " and " y = "log"_(1//2) 5 , then

If 3 +"log"_(5)x = 2"log"_(25) y , then x equals to

A line x=lamda intersects the graph of y=log_5 x and y=log_5(x+4) .The distance between the point of intersection is 0.5. Given lamda=a+sqrtb ,where a and b are integers , the value of (a+b) is

If "log"_(4) 5 = x " and log"_(5) 6 = y, " then log"_(2) 3 is equal to

If log_(5) x = a and log_(2) y = a ," find "100^(2a-1) in terms of x and y .

If log_(175)5x=log_(343)7x , then the value of log_(42)(x^(4)-2x^(2)+7) is

Draw the graph of y=log_(e)(-x),-log_(e)x,y=|log_(e)x|,y=log_(e)|x| and y=|log_(e)|x|| transforming the graph of y=log_(e)x.

VIKAS GUPTA (BLACK BOOK) ENGLISH-LOGARITHMS -Exercise-5 : Subjective Type Problems
  1. If x=log5(1000) and y=log7(2058),then

    Text Solution

    |

  2. The number N=6^(log(10)40). 5^(log(10)36) is a natural number ,Then su...

    Text Solution

    |

  3. The minimum value of 'c' such that log(b)(a^(log(2)b))=log(a)(b^(log(2...

    Text Solution

    |

  4. How many positive integers b have the property that log(b)729 is a pos...

    Text Solution

    |

  5. The number of negative integral values of x satisfying the inequality ...

    Text Solution

    |

  6. (6)/(5)a^((log(a)x)(log(10)a)(log(a)5))-3^(log(10)((x)/(10)))=9^(log(1...

    Text Solution

    |

  7. If log(5)((a+b)/(3))=(log(5)a+log(5)b)/(2),"then" (a^(4)+b^(4))/(a^(2...

    Text Solution

    |

  8. Let a , b , c , d be positive integers such that (log)a b=3/2a n d(log...

    Text Solution

    |

  9. The number of real values of x satisfying the equation log(10) sqrt(...

    Text Solution

    |

  10. The ordered pair (x,y) satisfying the equation x^(2)=1+6 log(4)y and...

    Text Solution

    |

  11. If log(7)log(7) sqrt(7sqrt(7sqrt(7)))=1-a log(7)2 and log(15)log(15) s...

    Text Solution

    |

  12. The number of ordered pair(s) of (x, y) satisfying the equations log...

    Text Solution

    |

  13. If log(b) n = 2 and og(n) 2b = 2, then find the value of b.

    Text Solution

    |

  14. If log(y) x + log(x) y = 2, x^(2)+y = 12 , then the value of xy is

    Text Solution

    |

  15. If x, y satisfy the equation, y^(x)=x^(y) and x=2y, then x^(2)+y^(2)=

    Text Solution

    |

  16. Find the number of real values of x satisfying the equation. log(2)(...

    Text Solution

    |

  17. If x(1), x(2)(x(1) gt x(2)) are the two solutions of the equation 3^...

    Text Solution

    |

  18. Find the number or real values of x satisfying the equation 9^(2log(9)...

    Text Solution

    |

  19. If log(16)(log(root(4)(3))(log(root(3)(5))(x)))=(1)/(2), find x.

    Text Solution

    |

  20. The value [(1)/(6)((2log(10)(1728))/(1+(1)/(2)log(10)(0.36)+(1)/(3)log...

    Text Solution

    |