Home
Class 12
MATHS
x^((logx)loga ylogy z) is equal to...

`x^((log_x)log_a ylog_y z)` is equal to

A

x

B

y

C

z

D

a

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( x^{(\log_x (\log_a y) \log_y z)} \), we will simplify it step by step. ### Step 1: Rewrite the logarithmic expressions We start with the expression: \[ x^{(\log_x (\log_a y) \log_y z)} \] Using the change of base formula for logarithms, we can rewrite \( \log_y z \) as: \[ \log_y z = \frac{\log_a z}{\log_a y} \] Thus, we can substitute this into the original expression: \[ x^{(\log_x (\log_a y) \cdot \frac{\log_a z}{\log_a y})} \] ### Step 2: Simplify the expression Now, we can simplify \( \log_x (\log_a y) \cdot \frac{\log_a z}{\log_a y} \): \[ \log_x (\log_a y) \cdot \frac{\log_a z}{\log_a y} = \frac{\log_a (\log_a y)}{\log_a x} \cdot \frac{\log_a z}{\log_a y} \] This can be rewritten as: \[ \frac{\log_a (\log_a y) \cdot \log_a z}{\log_a x \cdot \log_a y} \] ### Step 3: Substitute back into the expression Now we substitute this back into our expression: \[ x^{\left(\frac{\log_a (\log_a y) \cdot \log_a z}{\log_a x \cdot \log_a y}\right)} \] ### Step 4: Apply properties of logarithms Using the property \( a^{\log_b c} = c^{\log_b a} \), we can rewrite the expression: \[ x^{\left(\frac{\log_a z}{\log_a y}\right)} = z^{\left(\frac{\log_a x}{\log_a y}\right)} \] ### Step 5: Final simplification Now, we can simplify further: \[ z^{\left(\frac{\log_a x}{\log_a y}\right)} = z^{\log_y x} \] Using the property of logarithms, we can express this as: \[ z^{\log_y x} = x^{\log_y z} \] ### Conclusion Thus, the final simplified expression is: \[ \boxed{z^{\log_y x}} \] ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|4 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|7 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|4 Videos

Similar Questions

Explore conceptually related problems

2log x-log(x+1)-log(x-1) is equals to

The value of int x log x (log x - 1) dx is equal to

x^(log_(10)((y)/(z))).y^(log_(10)((z)/(x))).z^(log_(10)((x)/(y))) is equal to :

Solve the system of equations: (log)_a x(log)_a(x y z)=48(log)_a y log_a(x y z)=12 ,\ a >0,\ a!=1(log)_a z log_a(x y z)=84\

If log_a(ab)=x then log_b(ab) is equals to

4^(log_9 3)+9^(log_2 4)=1 0^(log_x 83) , then x is equal to

For positive numbers x ,\ y\ a n d\ z the numerical value of the determinant |1(log)_x y(log)_x z(log)_y x1(log)_y z(log)_z x(log)_z y1| is- a. 0 b. logx y z c. "log"(x+y+z) d. logx\ logy\ logz

If log_(2)(log_(2)(log_(3)x))=log_(3)(log_(3)(log_(2)y))=0 , then x-y is equal to :

If log(x-y)-log5-1/2logx-1/2logy=0 then x/y+y/x is equal to

If "log"_(4) 5 = x " and log"_(5) 6 = y, " then log"_(2) 3 is equal to

VIKAS GUPTA (BLACK BOOK) ENGLISH-LOGARITHMS -Exercise-5 : Subjective Type Problems
  1. x^((logx)loga ylogy z) is equal to

    Text Solution

    |

  2. The number N=6^(log(10)40). 5^(log(10)36) is a natural number ,Then su...

    Text Solution

    |

  3. The minimum value of 'c' such that log(b)(a^(log(2)b))=log(a)(b^(log(2...

    Text Solution

    |

  4. How many positive integers b have the property that log(b)729 is a pos...

    Text Solution

    |

  5. The number of negative integral values of x satisfying the inequality ...

    Text Solution

    |

  6. (6)/(5)a^((log(a)x)(log(10)a)(log(a)5))-3^(log(10)((x)/(10)))=9^(log(1...

    Text Solution

    |

  7. If log(5)((a+b)/(3))=(log(5)a+log(5)b)/(2),"then" (a^(4)+b^(4))/(a^(2...

    Text Solution

    |

  8. Let a , b , c , d be positive integers such that (log)a b=3/2a n d(log...

    Text Solution

    |

  9. The number of real values of x satisfying the equation log(10) sqrt(...

    Text Solution

    |

  10. The ordered pair (x,y) satisfying the equation x^(2)=1+6 log(4)y and...

    Text Solution

    |

  11. If log(7)log(7) sqrt(7sqrt(7sqrt(7)))=1-a log(7)2 and log(15)log(15) s...

    Text Solution

    |

  12. The number of ordered pair(s) of (x, y) satisfying the equations log...

    Text Solution

    |

  13. If log(b) n = 2 and og(n) 2b = 2, then find the value of b.

    Text Solution

    |

  14. If log(y) x + log(x) y = 2, x^(2)+y = 12 , then the value of xy is

    Text Solution

    |

  15. If x, y satisfy the equation, y^(x)=x^(y) and x=2y, then x^(2)+y^(2)=

    Text Solution

    |

  16. Find the number of real values of x satisfying the equation. log(2)(...

    Text Solution

    |

  17. If x(1), x(2)(x(1) gt x(2)) are the two solutions of the equation 3^...

    Text Solution

    |

  18. Find the number or real values of x satisfying the equation 9^(2log(9)...

    Text Solution

    |

  19. If log(16)(log(root(4)(3))(log(root(3)(5))(x)))=(1)/(2), find x.

    Text Solution

    |

  20. The value [(1)/(6)((2log(10)(1728))/(1+(1)/(2)log(10)(0.36)+(1)/(3)log...

    Text Solution

    |