Home
Class 12
MATHS
A circle has radius log(10)(a^(2)) and a...

A circle has radius `log_(10)(a^(2))` and a circumference of `log_(10)(b^(4))`. Then the value of `log_(a)b` is equal to :

A

`(1)/(4pi)`

B

`(1)/(pi)`

C

`2pi`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \log_a b \) given that the radius of the circle is \( \log_{10}(a^2) \) and the circumference is \( \log_{10}(b^4) \). ### Step-by-step Solution: 1. **Write down the formula for circumference**: The circumference \( C \) of a circle is given by the formula: \[ C = 2 \pi r \] where \( r \) is the radius. 2. **Substitute the values**: Here, the radius \( r \) is given as \( \log_{10}(a^2) \) and the circumference \( C \) is \( \log_{10}(b^4) \). Therefore, we can write: \[ \log_{10}(b^4) = 2 \pi \cdot \log_{10}(a^2) \] 3. **Simplify the equation**: We can simplify \( \log_{10}(a^2) \) using the logarithmic identity \( \log_{10}(a^m) = m \cdot \log_{10}(a) \): \[ \log_{10}(b^4) = 2 \pi \cdot 2 \cdot \log_{10}(a) = 4 \pi \cdot \log_{10}(a) \] 4. **Rearranging the equation**: Now we can rearrange the equation to isolate the logarithmic terms: \[ \frac{\log_{10}(b^4)}{\log_{10}(a^2)} = 2\pi \] This can be rewritten as: \[ \log_{10}(b^4) = 2\pi \cdot \log_{10}(a^2) \] 5. **Using the change of base formula**: We can express the left-hand side using the change of base formula: \[ \log_{10}(b^4) = 4 \cdot \log_{10}(b) \] Thus, we have: \[ 4 \cdot \log_{10}(b) = 4 \pi \cdot \log_{10}(a) \] 6. **Dividing both sides by 4**: Dividing both sides by 4 gives: \[ \log_{10}(b) = \pi \cdot \log_{10}(a) \] 7. **Expressing in terms of \( \log_a b \)**: We can express \( \log_a b \) using the change of base formula: \[ \log_a b = \frac{\log_{10}(b)}{\log_{10}(a)} \] Substituting the value of \( \log_{10}(b) \): \[ \log_a b = \frac{\pi \cdot \log_{10}(a)}{\log_{10}(a)} = \pi \] ### Final Answer: Thus, the value of \( \log_a b \) is: \[ \log_a b = \pi \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|4 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|7 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|4 Videos

Similar Questions

Explore conceptually related problems

If log_(10)2,log_(10)(2^(x)-1) and log_(10)(2^(x)+3) are in A.P then the value of x is

If log_(3)4=a , log_(5)3=b , then find the value of log_(3)10 in terms of a and b.

If log_4A = log_6B = log_9(A+B) then the value of B/A is

Express log_(10)2 + 1 in the form of log_(10)x .

Given (log _(10 ) ^(16))/(log _(10 ) ^(2)) = log _(10 ) ^(a) find the value of ( a+ 100) .

If log_(a)3 = 2 and log_(b)8= 3 , then log_(a)(b) is-

Given log_(10)2 = a and log_(10)3 = b . If 3^(x+2) = 45 , then the value of x in terms of a and b is-

If log_(10) 4 = 0.6020 , find the value of : (i) log_(10) 8 (ii) log_(10) 2.5

If log_(10)m=(1)/(2) , then log_(10)10m^(2)=

Express log_(10) root(5)(108) in term of log_(10)2 and log_(10)3 .

VIKAS GUPTA (BLACK BOOK) ENGLISH-LOGARITHMS -Exercise-5 : Subjective Type Problems
  1. A circle has radius log(10)(a^(2)) and a circumference of log(10)(b^(4...

    Text Solution

    |

  2. The number N=6^(log(10)40). 5^(log(10)36) is a natural number ,Then su...

    Text Solution

    |

  3. The minimum value of 'c' such that log(b)(a^(log(2)b))=log(a)(b^(log(2...

    Text Solution

    |

  4. How many positive integers b have the property that log(b)729 is a pos...

    Text Solution

    |

  5. The number of negative integral values of x satisfying the inequality ...

    Text Solution

    |

  6. (6)/(5)a^((log(a)x)(log(10)a)(log(a)5))-3^(log(10)((x)/(10)))=9^(log(1...

    Text Solution

    |

  7. If log(5)((a+b)/(3))=(log(5)a+log(5)b)/(2),"then" (a^(4)+b^(4))/(a^(2...

    Text Solution

    |

  8. Let a , b , c , d be positive integers such that (log)a b=3/2a n d(log...

    Text Solution

    |

  9. The number of real values of x satisfying the equation log(10) sqrt(...

    Text Solution

    |

  10. The ordered pair (x,y) satisfying the equation x^(2)=1+6 log(4)y and...

    Text Solution

    |

  11. If log(7)log(7) sqrt(7sqrt(7sqrt(7)))=1-a log(7)2 and log(15)log(15) s...

    Text Solution

    |

  12. The number of ordered pair(s) of (x, y) satisfying the equations log...

    Text Solution

    |

  13. If log(b) n = 2 and og(n) 2b = 2, then find the value of b.

    Text Solution

    |

  14. If log(y) x + log(x) y = 2, x^(2)+y = 12 , then the value of xy is

    Text Solution

    |

  15. If x, y satisfy the equation, y^(x)=x^(y) and x=2y, then x^(2)+y^(2)=

    Text Solution

    |

  16. Find the number of real values of x satisfying the equation. log(2)(...

    Text Solution

    |

  17. If x(1), x(2)(x(1) gt x(2)) are the two solutions of the equation 3^...

    Text Solution

    |

  18. Find the number or real values of x satisfying the equation 9^(2log(9)...

    Text Solution

    |

  19. If log(16)(log(root(4)(3))(log(root(3)(5))(x)))=(1)/(2), find x.

    Text Solution

    |

  20. The value [(1)/(6)((2log(10)(1728))/(1+(1)/(2)log(10)(0.36)+(1)/(3)log...

    Text Solution

    |