Home
Class 12
MATHS
The value of log((sqrt(2)-1))(5sqrt(2)-...

The value of `log_((sqrt(2)-1))(5sqrt(2)-7)` is :

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \log_{(\sqrt{2}-1)}(5\sqrt{2}-7) \), we can follow these steps: ### Step 1: Simplify \( 5\sqrt{2}-7 \) We start by rewriting \( 5\sqrt{2}-7 \) in a form that can be related to \( \sqrt{2}-1 \). ### Step 2: Square \( \sqrt{2}-1 \) Calculating \( (\sqrt{2}-1)^2 \): \[ (\sqrt{2}-1)^2 = 2 - 2\sqrt{2} + 1 = 3 - 2\sqrt{2} \] ### Step 3: Multiply \( 3-2\sqrt{2} \) by \( \sqrt{2}-1 \) Next, we multiply \( 3-2\sqrt{2} \) by \( \sqrt{2}-1 \): \[ (3 - 2\sqrt{2})(\sqrt{2}-1) = 3\sqrt{2} - 3 - 2\sqrt{2}\cdot\sqrt{2} + 2\sqrt{2} = 3\sqrt{2} - 3 - 4 + 2\sqrt{2} \] \[ = 5\sqrt{2} - 7 \] ### Step 4: Relate \( 5\sqrt{2}-7 \) to \( \sqrt{2}-1 \) From the calculation in Step 3, we have shown that: \[ 5\sqrt{2} - 7 = (\sqrt{2} - 1)^3 \] ### Step 5: Rewrite the logarithm Now we can rewrite our logarithmic expression: \[ \log_{(\sqrt{2}-1)}(5\sqrt{2}-7) = \log_{(\sqrt{2}-1)}((\sqrt{2}-1)^3) \] ### Step 6: Apply the logarithm power rule Using the logarithm power rule \( \log_b(a^n) = n \cdot \log_b(a) \): \[ \log_{(\sqrt{2}-1)}((\sqrt{2}-1)^3) = 3 \cdot \log_{(\sqrt{2}-1)}(\sqrt{2}-1) \] ### Step 7: Evaluate the logarithm Since \( \log_{(\sqrt{2}-1)}(\sqrt{2}-1) = 1 \): \[ 3 \cdot 1 = 3 \] ### Final Answer Thus, the value of \( \log_{(\sqrt{2}-1)}(5\sqrt{2}-7) \) is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|4 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|7 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|4 Videos

Similar Questions

Explore conceptually related problems

log((sqrt2-1)/(sqrt2+1))

The value of log_((8-3sqrt7))(8+3sqrt7) is

The value of (log)_(sqrt(4+2sqrt(2))sqrt(4-2sqrt(2)))2^9 is...........

The value of {(sqrt(2) +1)^(5) + (sqrt(2) -1)^(5)} ,is

The value of "log"_(sqrt(2)) sqrt(2sqrt(2sqrt(2sqrt(2)))) , is

The value of 6+(log)_(3/2)[1/(3sqrt(2)) * sqrt{ (4 - 1/(3sqrt(2))) sqrt(4 - 1/(3sqrt(2))....... } is ...............

The value of 6+ log_(3//2) (1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sqrt2)sqrt(4-1/(3sqrt2)...)))) is ________.

The value of log_((9)/(4))((1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3))sqrt(6-(1)/(2sqrt(3)))))...oo) is

The value of 5^((log)_(1/5)(1/2))+(log)_(sqrt(2))4/(sqrt(7)+sqrt(3))+(log)_(1/2)1/(10+2sqrt(21)) is.........

The value of 5^((log)_(1/5)(1/2))+(log)_(sqrt(2))4/(sqrt(7)+sqrt(3))+(log)_(1/2)1/(10+2sqrt(21)) is.........

VIKAS GUPTA (BLACK BOOK) ENGLISH-LOGARITHMS -Exercise-5 : Subjective Type Problems
  1. The value of log((sqrt(2)-1))(5sqrt(2)-7) is :

    Text Solution

    |

  2. The number N=6^(log(10)40). 5^(log(10)36) is a natural number ,Then su...

    Text Solution

    |

  3. The minimum value of 'c' such that log(b)(a^(log(2)b))=log(a)(b^(log(2...

    Text Solution

    |

  4. How many positive integers b have the property that log(b)729 is a pos...

    Text Solution

    |

  5. The number of negative integral values of x satisfying the inequality ...

    Text Solution

    |

  6. (6)/(5)a^((log(a)x)(log(10)a)(log(a)5))-3^(log(10)((x)/(10)))=9^(log(1...

    Text Solution

    |

  7. If log(5)((a+b)/(3))=(log(5)a+log(5)b)/(2),"then" (a^(4)+b^(4))/(a^(2...

    Text Solution

    |

  8. Let a , b , c , d be positive integers such that (log)a b=3/2a n d(log...

    Text Solution

    |

  9. The number of real values of x satisfying the equation log(10) sqrt(...

    Text Solution

    |

  10. The ordered pair (x,y) satisfying the equation x^(2)=1+6 log(4)y and...

    Text Solution

    |

  11. If log(7)log(7) sqrt(7sqrt(7sqrt(7)))=1-a log(7)2 and log(15)log(15) s...

    Text Solution

    |

  12. The number of ordered pair(s) of (x, y) satisfying the equations log...

    Text Solution

    |

  13. If log(b) n = 2 and og(n) 2b = 2, then find the value of b.

    Text Solution

    |

  14. If log(y) x + log(x) y = 2, x^(2)+y = 12 , then the value of xy is

    Text Solution

    |

  15. If x, y satisfy the equation, y^(x)=x^(y) and x=2y, then x^(2)+y^(2)=

    Text Solution

    |

  16. Find the number of real values of x satisfying the equation. log(2)(...

    Text Solution

    |

  17. If x(1), x(2)(x(1) gt x(2)) are the two solutions of the equation 3^...

    Text Solution

    |

  18. Find the number or real values of x satisfying the equation 9^(2log(9)...

    Text Solution

    |

  19. If log(16)(log(root(4)(3))(log(root(3)(5))(x)))=(1)/(2), find x.

    Text Solution

    |

  20. The value [(1)/(6)((2log(10)(1728))/(1+(1)/(2)log(10)(0.36)+(1)/(3)log...

    Text Solution

    |