Home
Class 12
MATHS
The product of all values of x satisfyi...

The product of all values of x satisfying the equations `log_(3)a-log_(x)a=log_(x//3)a` is :

A

3

B

`(3)/(2)`

C

18

D

27

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_3 a - \log_x a = \log_{x/3} a \), we will follow these steps: ### Step 1: Rewrite the equation using logarithmic properties Using the property \( \log_a b - \log_a c = \log_a \left(\frac{b}{c}\right) \), we can rewrite the left-hand side: \[ \log_3 a - \log_x a = \log_3 \left(\frac{a}{x}\right) \] Thus, the equation becomes: \[ \log_3 \left(\frac{a}{x}\right) = \log_{x/3} a \] ### Step 2: Change of base for the right-hand side Using the change of base formula \( \log_a b = \frac{\log_c b}{\log_c a} \), we can rewrite the right-hand side: \[ \log_{x/3} a = \frac{\log_3 a}{\log_3 (x/3)} = \frac{\log_3 a}{\log_3 x - \log_3 3} = \frac{\log_3 a}{\log_3 x - 1} \] ### Step 3: Set the two sides equal Now we have: \[ \log_3 \left(\frac{a}{x}\right) = \frac{\log_3 a}{\log_3 x - 1} \] ### Step 4: Cross-multiply to eliminate the fraction Cross-multiplying gives: \[ \log_3 \left(\frac{a}{x}\right) \cdot (\log_3 x - 1) = \log_3 a \] ### Step 5: Expand the left-hand side Expanding the left-hand side: \[ \log_3 a \cdot \log_3 x - \log_3 x = \log_3 a \] ### Step 6: Rearranging the equation Rearranging gives: \[ \log_3 a \cdot \log_3 x - \log_3 a - \log_3 x = 0 \] Factoring out common terms: \[ \log_3 a \cdot (\log_3 x - 1) - \log_3 x = 0 \] ### Step 7: Solve for \( \log_3 x \) Setting \( \log_3 x = y \): \[ \log_3 a \cdot (y - 1) - y = 0 \] This simplifies to: \[ \log_3 a \cdot y - \log_3 a - y = 0 \] Rearranging gives: \[ (\log_3 a - 1) y = \log_3 a \] Thus: \[ y = \frac{\log_3 a}{\log_3 a - 1} \] ### Step 8: Substitute back for \( x \) Now substituting back for \( y \): \[ \log_3 x = \frac{\log_3 a}{\log_3 a - 1} \] This implies: \[ x = 3^{\frac{\log_3 a}{\log_3 a - 1}} = a^{\frac{1}{\log_3 a - 1}} \] ### Step 9: Find the product of all values of \( x \) The values of \( x \) are: \[ x_1 = 3^{\frac{3 + \sqrt{5}}{2}}, \quad x_2 = 3^{\frac{3 - \sqrt{5}}{2}} \] The product \( x_1 \cdot x_2 \) is: \[ x_1 \cdot x_2 = 3^{\frac{3 + \sqrt{5}}{2}} \cdot 3^{\frac{3 - \sqrt{5}}{2}} = 3^{\frac{(3 + \sqrt{5}) + (3 - \sqrt{5})}{2}} = 3^{\frac{6}{2}} = 3^3 = 27 \] ### Final Answer The product of all values of \( x \) satisfying the equation is \( \boxed{27} \). ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|4 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|7 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|4 Videos

Similar Questions

Explore conceptually related problems

Sum of all values of x satisfying the system of equations 5 (log_(y)x+log_(x)y)=26, xy=64 is :

The set of real values of x satisfying the equation |x-1|^(log_3(x^2)-2log_x(9))=(x-1)^7

The value of x satisfying the equation 2log_(10)x - log_(10) (2x-75) = 2 is

Number of real values of x satisfying the equation log_2(x^2-x)*log_2((x-1)/x)+(log_2x)^2=4 ,is (a) 0 (b) 2 (c) 3 (d) 7

The value 'x' satisfying the equation, 4^(log_(9)3)+9^(log_(2)4)=10^(log_(x)83)is ____

The number of values of x satisfying the equation log_(2)(9^(x-1)+7)=2+log_(2)(3^(x-1)+1) is :

Find the number of real values of x satisfying the equation. log_(2)(4^(x+1)+4)*log_(2)(4^(x)+1)=log_(1//sqrt(2)) sqrt((1)/(8))

The number of real values of x satisfying the equation log_(10) sqrt(1+x)+3log_(10) sqrt(1-x)=2+log_(10) sqrt(1-x^(2)) is :

Number of real values of x satisfying the equation log_(x^2+6x+8)(log_(2x^2+2x+3)(x^2-2x))=0 is equal to

The values of x, satisfying the equation for AA a > 0, 2log_(x) a + log_(ax) a +3log_(a^2 x)a=0 are

VIKAS GUPTA (BLACK BOOK) ENGLISH-LOGARITHMS -Exercise-5 : Subjective Type Problems
  1. The product of all values of x satisfying the equations log(3)a-log(...

    Text Solution

    |

  2. The number N=6^(log(10)40). 5^(log(10)36) is a natural number ,Then su...

    Text Solution

    |

  3. The minimum value of 'c' such that log(b)(a^(log(2)b))=log(a)(b^(log(2...

    Text Solution

    |

  4. How many positive integers b have the property that log(b)729 is a pos...

    Text Solution

    |

  5. The number of negative integral values of x satisfying the inequality ...

    Text Solution

    |

  6. (6)/(5)a^((log(a)x)(log(10)a)(log(a)5))-3^(log(10)((x)/(10)))=9^(log(1...

    Text Solution

    |

  7. If log(5)((a+b)/(3))=(log(5)a+log(5)b)/(2),"then" (a^(4)+b^(4))/(a^(2...

    Text Solution

    |

  8. Let a , b , c , d be positive integers such that (log)a b=3/2a n d(log...

    Text Solution

    |

  9. The number of real values of x satisfying the equation log(10) sqrt(...

    Text Solution

    |

  10. The ordered pair (x,y) satisfying the equation x^(2)=1+6 log(4)y and...

    Text Solution

    |

  11. If log(7)log(7) sqrt(7sqrt(7sqrt(7)))=1-a log(7)2 and log(15)log(15) s...

    Text Solution

    |

  12. The number of ordered pair(s) of (x, y) satisfying the equations log...

    Text Solution

    |

  13. If log(b) n = 2 and og(n) 2b = 2, then find the value of b.

    Text Solution

    |

  14. If log(y) x + log(x) y = 2, x^(2)+y = 12 , then the value of xy is

    Text Solution

    |

  15. If x, y satisfy the equation, y^(x)=x^(y) and x=2y, then x^(2)+y^(2)=

    Text Solution

    |

  16. Find the number of real values of x satisfying the equation. log(2)(...

    Text Solution

    |

  17. If x(1), x(2)(x(1) gt x(2)) are the two solutions of the equation 3^...

    Text Solution

    |

  18. Find the number or real values of x satisfying the equation 9^(2log(9)...

    Text Solution

    |

  19. If log(16)(log(root(4)(3))(log(root(3)(5))(x)))=(1)/(2), find x.

    Text Solution

    |

  20. The value [(1)/(6)((2log(10)(1728))/(1+(1)/(2)log(10)(0.36)+(1)/(3)log...

    Text Solution

    |