Home
Class 12
MATHS
If log(10)|x^(3)+y^(3)|-log(10)|x^(2)-xy...

If `log_(10)|x^(3)+y^(3)|-log_(10)|x^(2)-xy+y^(2)|+log_(10)|x^(3)-y^(3)|-log_(10)|x^(2)+xy+y^(2)|=log_(10)221`. Where x, y are integers, then
Q. If `x=111`, then y can be :

A

`pm 111`

B

`pm 2`

C

`pm 110`

D

`pm 109`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|4 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|4 Videos

Similar Questions

Explore conceptually related problems

If log_(10)|x^3 + y^3|-log_(10) |x^2-xy + y^2|+log_(10)|x^3-y^3|-log_(10)|x^2+xy+y^2|=log_(10)221 . wherex, y are integers , then (i) if x=111 then y can be: (ii) if y=2 then value of x can be:

If log_(10) (x^3+y^3)-log_(10) (x^2+y^2-xy) =0, y>=0 is

If "log"_(10) x =y, " then log"_(10^(3))x^(2) equals

Solve (x^(log_(10)3))^(2) - (3^(log_(10)x)) - 2 = 0 .

Solve |x-1|^((log_(10) x)^2-log_(10) x^2=|x-1|^3

If log_(10)((x^(3) - y^(3))/ (x^(3)+y^(3))) = 2 , then (dy)/(dx)=

If log_(10)x+log_(10)y=2, x-y=15 then :

If (log)_(10)(x^3+y^3)-(log)_(10)(x^2+y^2-x y)lt=2, and x ,y are positive real number, then find the maximum value of x ydot

x^(log_(10)((y)/(z))).y^(log_(10)((z)/(x))).z^(log_(10)((x)/(y))) is equal to :

If log_(10)(x-1)^3-3log_(10)(x-3)=log_(10)8,then log_(x)625 has the value equal to :