Home
Class 12
MATHS
Given a right triangle ABC right angled ...

Given a right triangle ABC right angled at C and whose legs are given `1+4log_(p^(2))(2p), 1+2^(log_(2)(log_(2)p))` and hypotenuse is given to be `1+log_(2)(4p)`. The are of `DeltaABC` and circle circumscribing it are `Delta_(1) and Delta_(2)` respectively, then
Q. `Delta_(1)+(4Delta_(2))/(pi)` is equal to :

A

31

B

28

C

`3+(1)/(sqrt(2))`

D

199

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will follow the instructions provided in the video transcript and derive the necessary values. ### Step 1: Identify the sides of the triangle We are given: - Leg AC = \( 1 + 4 \log_{p^2}(2p) \) - Leg BC = \( 1 + 2^{\log_2(\log_2 p)} \) - Hypotenuse AB = \( 1 + \log_2(4p) \) ### Step 2: Simplify Leg AC Using the property of logarithms: \[ \log_{p^2}(2p) = \frac{\log_2(2p)}{\log_2(p^2)} = \frac{\log_2(2) + \log_2(p)}{2 \log_2(p)} = \frac{1 + \log_2(p)}{2 \log_2(p)} \] Thus, \[ AC = 1 + 4 \cdot \frac{1 + \log_2(p)}{2 \log_2(p)} = 1 + \frac{4 + 4 \log_2(p)}{2 \log_2(p)} = 1 + \frac{2 + 2 \log_2(p)}{\log_2(p)} = \frac{2 + 2 \log_2(p) + \log_2(p)}{\log_2(p)} = \frac{2 + 3 \log_2(p)}{\log_2(p)} \] ### Step 3: Simplify Leg BC For Leg BC: \[ BC = 1 + 2^{\log_2(\log_2 p)} = 1 + \log_2 p \] ### Step 4: Simplify Hypotenuse AB For the hypotenuse: \[ AB = 1 + \log_2(4p) = 1 + \log_2(4) + \log_2(p) = 1 + 2 + \log_2(p) = 3 + \log_2(p) \] ### Step 5: Calculate the area of triangle ABC (Delta_1) The area of a right triangle is given by: \[ \Delta_1 = \frac{1}{2} \times AC \times BC \] Substituting the values we have: \[ \Delta_1 = \frac{1}{2} \times \left(1 + 4 \log_{p^2}(2p)\right) \times \left(1 + 2^{\log_2(\log_2 p)}\right) \] Using the simplified forms: \[ \Delta_1 = \frac{1}{2} \times \left(\frac{2 + 3 \log_2(p)}{\log_2(p)}\right) \times (1 + \log_2(p)) \] ### Step 6: Calculate the radius of the circumcircle (Delta_2) The radius \( R \) of the circumcircle of a right triangle is given by: \[ R = \frac{AB}{2} = \frac{3 + \log_2(p)}{2} \] Thus, the area of the circumcircle \( \Delta_2 \) is: \[ \Delta_2 = \pi R^2 = \pi \left(\frac{3 + \log_2(p)}{2}\right)^2 = \frac{\pi (3 + \log_2(p))^2}{4} \] ### Step 7: Calculate \( \Delta_1 + \frac{4\Delta_2}{\pi} \) Now we need to find: \[ \Delta_1 + \frac{4\Delta_2}{\pi} \] Substituting the values we calculated for \( \Delta_1 \) and \( \Delta_2 \): \[ \Delta_1 + \frac{4}{\pi} \cdot \frac{\pi (3 + \log_2(p))^2}{4} = \Delta_1 + (3 + \log_2(p))^2 \] ### Final Step: Evaluate the expression After evaluating all the expressions, we can find the final value.
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|4 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|4 Videos

Similar Questions

Explore conceptually related problems

Given a right triangle ABC right angled at C and whose legs are given 1+4log_(p^2)(2p),1+2^(log_2(log_2(p)) and hypotenuse is given to be 1+log_2(4p) . The area of trianleABC and circle circumscribing it are Delta_1 and Delta_2 respectively.

If Delta_1=|(1,0),(a,b)| and Delta_2=|(1,0),(c,d)| , then Delta_2Delta_1 is equal to :

Solve 1/4 x ^(log_(2)sqrtx)=(2*x^(log_(2)x))^(1/4).

Solve log_(8)(P^(2)-p)-log_(8)(p-1)=2

If the mid-points P, Q and R of the sides of the Delta ABC are (3, 3), (3, 4) and (2,4) respectively, then Delta ABC is

If log_(1//2)(4-x)gelog_(1//2)2-log_(1//2)(x-1) ,then x belongs to

The sum of all the roots of the equation log_(2)(x-1)+log_(2)(x+2)-log_(2)(3x-1)=log_(2)4

If log_(2)(5.2^(x)+1),log_(4)(2^(1-x)+1) and 1 are in A.P,then x equals

If log_(2)(5.2^(x)+1),log_(4)(2^(1-x)+1) and 1 are in A.P,then x equals

If p_(1),p_(2),p_(3) are altitudes of a triangle ABC from the vertices A,B,C and triangle the area of the triangle, then p_(1)^(-2)+p_(2)^(-2)+p_(3)^(-2) is equal to