Home
Class 12
MATHS
Given a right triangle ABC right angled ...

Given a right triangle ABC right angled at C and whose legs are given `1+4log_(p^2)(2p),1+2^(log_2(log_2(p))` and hypotenuse is given to be `1+log_2(4p)`. The area of `trianleABC` and circle circumscribing it are `Delta_1` and`Delta_2` respectively.

A

`(1)/(2)`

B

`(1)/(sqrt(2))`

C

`(sqrt(3))/(2)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the area of triangle ABC and the value of the expression involving the area and the circumradius. Let's break this down step by step. ### Step 1: Define the sides of the triangle Given the legs of the triangle: - \( AC = 1 + 4 \log_{p^2}(2p) \) - \( BC = 1 + 2^{\log_2(\log_2(p))} \) And the hypotenuse: - \( AB = 1 + \log_2(4p) \) ### Step 2: Simplify the sides **For side AC:** Using the property of logarithms: \[ \log_{p^2}(2p) = \frac{\log_2(2p)}{\log_2(p^2)} = \frac{\log_2(2) + \log_2(p)}{2 \log_2(p)} = \frac{1 + \log_2(p)}{2 \log_2(p)} \] Thus, \[ AC = 1 + 4 \cdot \frac{1 + \log_2(p)}{2 \log_2(p)} = 1 + \frac{4 + 4\log_2(p)}{2\log_2(p)} = 1 + \frac{2 + 2\log_2(p)}{\log_2(p)} = 3 + \frac{2}{\log_2(p)} \] **For side BC:** Using the property \( 2^{\log_2(x)} = x \): \[ BC = 1 + \log_2(p) \] **For hypotenuse AB:** Using the property of logarithms: \[ AB = 1 + \log_2(4) + \log_2(p) = 1 + 2 + \log_2(p) = 3 + \log_2(p) \] ### Step 3: Apply Pythagorean theorem Using the Pythagorean theorem: \[ AC^2 + BC^2 = AB^2 \] Substituting the values: \[ \left(3 + \frac{2}{\log_2(p)}\right)^2 + (1 + \log_2(p))^2 = (3 + \log_2(p))^2 \] ### Step 4: Expand and simplify Expanding both sides: \[ \left(3 + \frac{2}{\log_2(p)}\right)^2 = 9 + 2 \cdot 3 \cdot \frac{2}{\log_2(p)} + \left(\frac{2}{\log_2(p)}\right)^2 = 9 + \frac{12}{\log_2(p)} + \frac{4}{(\log_2(p))^2} \] \[ (1 + \log_2(p))^2 = 1 + 2\log_2(p) + (\log_2(p))^2 \] \[ (3 + \log_2(p))^2 = 9 + 6\log_2(p) + (\log_2(p))^2 \] Combining: \[ 9 + \frac{12}{\log_2(p)} + \frac{4}{(\log_2(p))^2} + 1 + 2\log_2(p) = 9 + 6\log_2(p) + (\log_2(p))^2 \] ### Step 5: Solve for \( p \) This leads to a quadratic equation in terms of \( \log_2(p) \). Solving this will give us the value of \( p \). ### Step 6: Calculate the area of triangle ABC The area \( \Delta_1 \) of triangle ABC is given by: \[ \Delta_1 = \frac{1}{2} \times AC \times BC = \frac{1}{2} \times \left(3 + \frac{2}{\log_2(p)}\right) \times (1 + \log_2(p)) \] ### Step 7: Find the circumradius \( R \) The circumradius \( R \) of triangle ABC can be calculated using: \[ R = \frac{AB}{2 \sin C} \] Since \( C \) is the right angle, \( \sin C = 1 \). ### Step 8: Final expression Finally, we need to evaluate: \[ \sin(\phi) \cdot 2P^2 \Delta_1 + 2/6 \] Substituting the values of \( P \) and \( \Delta_1 \) will give the final answer.
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|4 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|4 Videos

Similar Questions

Explore conceptually related problems

Given a right triangle ABC right angled at C and whose legs are given 1+4log_(p^(2))(2p), 1+2^(log_(2)(log_(2)p)) and hypotenuse is given to be 1+log_(2)(4p) . The are of DeltaABC and circle circumscribing it are Delta_(1) and Delta_(2) respectively, then Q. Delta_(1)+(4Delta_(2))/(pi) is equal to :

Solve log_(8)(P^(2)-p)-log_(8)(p-1)=2

If log_(2)(5.2^(x)+1),log_(4)(2^(1-x)+1) and 1 are in A.P,then x equals

If log_(2)(5.2^(x)+1),log_(4)(2^(1-x)+1) and 1 are in A.P,then x equals

If log_(1//2)(4-x)gelog_(1//2)2-log_(1//2)(x-1) ,then x belongs to

The sum of all the roots of the equation log_(2)(x-1)+log_(2)(x+2)-log_(2)(3x-1)=log_(2)4

ABC is a right angled triangle of given area S.Find the sides of the triangle for which the area of circumscribed circle is least.

ABC is right -angled triangle of given area S. Find the sides of the triangle for which the area of the circumscribed circle is least.

If 1,log_9(3^(1-x)+2), log_3(4*3^x-1) are in A.P then x equals to

The value of N satisfying log_(a)[1+log_(b){1+log_(c)(1+log_(p)N)}]=0 is