Home
Class 12
MATHS
The number of negative integral values o...

The number of negative integral values of x satisfying the inequality `log_((x+(5)/(2)))((x-5)/(2x-3))^(2)lt 0` is :

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \log_{(x+\frac{5}{2})}\left(\frac{(x-5)}{(2x-3)}\right)^{2} < 0 \), we will follow these steps: ### Step 1: Rewrite the Inequality We start by rewriting the inequality: \[ \log_{(x+\frac{5}{2})}\left(\frac{(x-5)}{(2x-3)}\right)^{2} < 0 \] This implies that: \[ \frac{(x-5)}{(2x-3)}^{2} < 1 \] and the base \( x + \frac{5}{2} > 0 \). ### Step 2: Analyze the Base For the logarithm to be defined, the base must be positive: \[ x + \frac{5}{2} > 0 \implies x > -\frac{5}{2} \] ### Step 3: Solve the Inequality Now we need to solve: \[ \frac{(x-5)^{2}}{(2x-3)^{2}} < 1 \] This can be rewritten as: \[ (x-5)^{2} < (2x-3)^{2} \] ### Step 4: Expand Both Sides Expanding both sides gives: \[ x^{2} - 10x + 25 < 4x^{2} - 12x + 9 \] ### Step 5: Rearrange the Inequality Rearranging the inequality leads to: \[ 0 < 3x^{2} - 2x - 16 \] or \[ 3x^{2} - 2x - 16 > 0 \] ### Step 6: Factor the Quadratic To factor \( 3x^{2} - 2x - 16 \), we can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} \] where \( a = 3, b = -2, c = -16 \): \[ x = \frac{2 \pm \sqrt{(-2)^{2} - 4 \cdot 3 \cdot (-16)}}{2 \cdot 3} \] \[ x = \frac{2 \pm \sqrt{4 + 192}}{6} = \frac{2 \pm \sqrt{196}}{6} = \frac{2 \pm 14}{6} \] This gives us the roots: \[ x = \frac{16}{6} = \frac{8}{3} \quad \text{and} \quad x = \frac{-12}{6} = -2 \] ### Step 7: Test Intervals The critical points are \( x = -2 \) and \( x = \frac{8}{3} \). We will test the intervals: 1. \( (-\infty, -2) \) 2. \( (-2, \frac{8}{3}) \) 3. \( (\frac{8}{3}, \infty) \) ### Step 8: Determine Signs - For \( x < -2 \): Choose \( x = -3 \): \[ 3(-3)^{2} - 2(-3) - 16 = 27 + 6 - 16 = 17 > 0 \] - For \( -2 < x < \frac{8}{3} \): Choose \( x = 0 \): \[ 3(0)^{2} - 2(0) - 16 = -16 < 0 \] - For \( x > \frac{8}{3} \): Choose \( x = 3 \): \[ 3(3)^{2} - 2(3) - 16 = 27 - 6 - 16 = 5 > 0 \] ### Step 9: Conclusion on Intervals The inequality \( 3x^{2} - 2x - 16 > 0 \) holds for: \[ x < -2 \quad \text{or} \quad x > \frac{8}{3} \] ### Step 10: Find Negative Integral Values The only negative integral values satisfying \( x < -2 \) are \( -3, -4, -5, \ldots \). However, we need to check if these values satisfy the base condition \( x + \frac{5}{2} > 0 \): - For \( x = -3 \): \( -3 + \frac{5}{2} = -3 + 2.5 = -0.5 \) (not valid) - For \( x = -4 \): \( -4 + \frac{5}{2} = -4 + 2.5 = -1.5 \) (not valid) - For \( x = -5 \): \( -5 + \frac{5}{2} = -5 + 2.5 = -2.5 \) (not valid) Thus, there are **no negative integral values of \( x \)** satisfying the original inequality. ### Final Answer The number of negative integral values of \( x \) satisfying the inequality is **0**. ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|7 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|4 Videos

Similar Questions

Explore conceptually related problems

Find the number of positive integral value of x satisfying the inequality ((3^(x)-5^(x))(x-2))/((x^(2)+5x+2))ge0

The set of real values of x satisfying the inequality log_(x+1/x)(log_2((x-1)/(x+2))) gt 0, is equal to

Find the values of x satisfying the inequalities : log_2(x^2-24)gtlog_2(5x)

The number of integral values of x satisfying the inequality (3/4)^(6x+10-x^2)<(27)/(64) is _____

Sum of integral values of x satisfying the inequality 3^((5/2)log_3(12-3x))-3^(log_2(x))>32

Number of intergral value of x satisfying the inequality (x^(2) + 6x - 7)/(|x + 4|) lt 0 is :

The largest integral value of x satisfying the inequality (tan^(-1)(x))^(2)-4(tan^(-1)(x))+3gt0 is :

Number of intergal values of x satisfying the inequality (x^2+6x-7)/(|x+2||x+3|) lt 0 is

If number of integral values of x satisfying the inequality ((x)/(100))^(7logx-log^(2)x-6)ge10^(12) are alpha then

Sum of all integral values of x satisfying the inequality (3^((5/2)log(12-3x)))-(3^(log x))>32 is......

VIKAS GUPTA (BLACK BOOK) ENGLISH-LOGARITHMS -Exercise-5 : Subjective Type Problems
  1. The number N=6^(log(10)40). 5^(log(10)36) is a natural number ,Then su...

    Text Solution

    |

  2. The minimum value of 'c' such that log(b)(a^(log(2)b))=log(a)(b^(log(2...

    Text Solution

    |

  3. How many positive integers b have the property that log(b)729 is a pos...

    Text Solution

    |

  4. The number of negative integral values of x satisfying the inequality ...

    Text Solution

    |

  5. (6)/(5)a^((log(a)x)(log(10)a)(log(a)5))-3^(log(10)((x)/(10)))=9^(log(1...

    Text Solution

    |

  6. If log(5)((a+b)/(3))=(log(5)a+log(5)b)/(2),"then" (a^(4)+b^(4))/(a^(2...

    Text Solution

    |

  7. Let a , b , c , d be positive integers such that (log)a b=3/2a n d(log...

    Text Solution

    |

  8. The number of real values of x satisfying the equation log(10) sqrt(...

    Text Solution

    |

  9. The ordered pair (x,y) satisfying the equation x^(2)=1+6 log(4)y and...

    Text Solution

    |

  10. If log(7)log(7) sqrt(7sqrt(7sqrt(7)))=1-a log(7)2 and log(15)log(15) s...

    Text Solution

    |

  11. The number of ordered pair(s) of (x, y) satisfying the equations log...

    Text Solution

    |

  12. If log(b) n = 2 and og(n) 2b = 2, then find the value of b.

    Text Solution

    |

  13. If log(y) x + log(x) y = 2, x^(2)+y = 12 , then the value of xy is

    Text Solution

    |

  14. If x, y satisfy the equation, y^(x)=x^(y) and x=2y, then x^(2)+y^(2)=

    Text Solution

    |

  15. Find the number of real values of x satisfying the equation. log(2)(...

    Text Solution

    |

  16. If x(1), x(2)(x(1) gt x(2)) are the two solutions of the equation 3^...

    Text Solution

    |

  17. Find the number or real values of x satisfying the equation 9^(2log(9)...

    Text Solution

    |

  18. If log(16)(log(root(4)(3))(log(root(3)(5))(x)))=(1)/(2), find x.

    Text Solution

    |

  19. The value [(1)/(6)((2log(10)(1728))/(1+(1)/(2)log(10)(0.36)+(1)/(3)log...

    Text Solution

    |