Home
Class 12
MATHS
(6)/(5)a^((log(a)x)(log(10)a)(log(a)5))-...

`(6)/(5)a^((log_(a)x)(log_(10)a)(log_(a)5))-3^(log_(10)((x)/(10)))=9^(log_(100)x+log_(4)2)`
(where `a gt 0, a ne 1)`, then `log_(3)x=alpha +beta, alpha ` is integer, `beta in [0, 1)`, then `alpha=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{6}{5} a^{(\log_a x)(\log_{10} a)(\log_a 5)} - 3^{\log_{10} \left(\frac{x}{10}\right)} = 9^{\log_{100} x + \log_4 2} \] we will follow these steps: ### Step 1: Simplify the Right-Hand Side The right-hand side of the equation is \[ 9^{\log_{100} x + \log_4 2}. \] Using the property of logarithms, we can rewrite this as: \[ 9^{\log_{100} x} \cdot 9^{\log_4 2}. \] Now, we know that \(9 = 3^2\), so we can rewrite it as: \[ (3^2)^{\log_{100} x} \cdot 9^{\log_4 2} = 3^{2 \log_{100} x} \cdot 9^{\log_4 2}. \] Next, we can simplify \(9^{\log_4 2}\): \[ 9^{\log_4 2} = (3^2)^{\log_4 2} = 3^{2 \log_4 2} = 3^{\log_4 4} = 3^1 = 3. \] Thus, the right-hand side becomes: \[ 3^{2 \log_{100} x} \cdot 3 = 3^{2 \log_{100} x + 1}. \] ### Step 2: Simplify the Left-Hand Side Now, let's simplify the left-hand side: \[ \frac{6}{5} a^{(\log_a x)(\log_{10} a)(\log_a 5)} - 3^{\log_{10} \left(\frac{x}{10}\right)}. \] Using the properties of logarithms, we can express \(\log_{10} \left(\frac{x}{10}\right)\) as: \[ \log_{10} x - \log_{10} 10 = \log_{10} x - 1. \] Thus, \[ 3^{\log_{10} \left(\frac{x}{10}\right)} = 3^{\log_{10} x - 1} = \frac{3^{\log_{10} x}}{3}. \] Now, substituting this back into the left-hand side gives us: \[ \frac{6}{5} a^{(\log_a x)(\log_{10} a)(\log_a 5)} - \frac{3^{\log_{10} x}}{3}. \] ### Step 3: Equate Both Sides Now we equate both sides: \[ \frac{6}{5} a^{(\log_a x)(\log_{10} a)(\log_a 5)} - \frac{3^{\log_{10} x}}{3} = 3^{2 \log_{100} x + 1}. \] ### Step 4: Let \(t = \log_{10} x\) Let \(t = \log_{10} x\). Then we have: \[ \frac{6}{5} a^{(\log_a 10^t)(\log_{10} a)(\log_a 5)} - \frac{3^t}{3} = 3^{2 \frac{t}{2} + 1}. \] ### Step 5: Solve for \(x\) After simplifying and solving for \(x\), we find: \[ x = 100. \] ### Step 6: Find \(\log_3 x\) Now, we need to find \(\log_3 x\): \[ \log_3 100 = \log_3 (10^2) = 2 \log_3 10. \] ### Step 7: Determine \(\alpha\) and \(\beta\) We know that: \[ \log_3 10 \approx 2.0959, \] so \[ \log_3 100 \approx 2 \times 2.0959 = 4.1918. \] Thus, we can express this as: \[ \log_3 100 = 4 + 0.1918, \] where \(\alpha = 4\) and \(\beta \approx 0.1918\). ### Final Answer Therefore, the value of \(\alpha\) is: \[ \boxed{4}. \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|7 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|4 Videos

Similar Questions

Explore conceptually related problems

x^(log_(10)((y)/(z))).y^(log_(10)((z)/(x))).z^(log_(10)((x)/(y))) is equal to :

If 6/5 a^A-3^B=9^C where A=log_a x.log_(10) alog_a 5,B=log_(10) (x/10) and C=log_(100) x+log_4 2 . Find x

If log_(10)(x-1)^3-3log_(10)(x-3)=log_(10)8,then log_(x)625 has the value equal to :

Solve (x^(log_(10)3))^(2) - (3^(log_(10)x)) - 2 = 0 .

log_(10)(log_(2)3) + log_(10)(log_(3)4) + …………+log_(10)(log_(1023)1024) simplies to

Let P=(5)/((1)/(log_(2)x)+(1)/(log_(3)x)+(1)/(log_(4)x)+(1)/(log_(5)x))and (120)^(P)=32 , then the value of x be :

Solve 4^(log_(9)x)-6x^(log_(9)2)+2^(log_(3)27)=0 .

Solve (log_(3)x)(log_(5)9)- log_x 25 + log_(3) 2 = log_(3) 54 .

If log_(16)(log_(root(4)(3))(log_(root(3)(5))(x)))=(1)/(2) , find x.

Solve log_(6) 9-log_(9) 27 + log_(8)x = log_(64) x - log_(6) 4 ..

VIKAS GUPTA (BLACK BOOK) ENGLISH-LOGARITHMS -Exercise-5 : Subjective Type Problems
  1. The number N=6^(log(10)40). 5^(log(10)36) is a natural number ,Then su...

    Text Solution

    |

  2. The minimum value of 'c' such that log(b)(a^(log(2)b))=log(a)(b^(log(2...

    Text Solution

    |

  3. How many positive integers b have the property that log(b)729 is a pos...

    Text Solution

    |

  4. The number of negative integral values of x satisfying the inequality ...

    Text Solution

    |

  5. (6)/(5)a^((log(a)x)(log(10)a)(log(a)5))-3^(log(10)((x)/(10)))=9^(log(1...

    Text Solution

    |

  6. If log(5)((a+b)/(3))=(log(5)a+log(5)b)/(2),"then" (a^(4)+b^(4))/(a^(2...

    Text Solution

    |

  7. Let a , b , c , d be positive integers such that (log)a b=3/2a n d(log...

    Text Solution

    |

  8. The number of real values of x satisfying the equation log(10) sqrt(...

    Text Solution

    |

  9. The ordered pair (x,y) satisfying the equation x^(2)=1+6 log(4)y and...

    Text Solution

    |

  10. If log(7)log(7) sqrt(7sqrt(7sqrt(7)))=1-a log(7)2 and log(15)log(15) s...

    Text Solution

    |

  11. The number of ordered pair(s) of (x, y) satisfying the equations log...

    Text Solution

    |

  12. If log(b) n = 2 and og(n) 2b = 2, then find the value of b.

    Text Solution

    |

  13. If log(y) x + log(x) y = 2, x^(2)+y = 12 , then the value of xy is

    Text Solution

    |

  14. If x, y satisfy the equation, y^(x)=x^(y) and x=2y, then x^(2)+y^(2)=

    Text Solution

    |

  15. Find the number of real values of x satisfying the equation. log(2)(...

    Text Solution

    |

  16. If x(1), x(2)(x(1) gt x(2)) are the two solutions of the equation 3^...

    Text Solution

    |

  17. Find the number or real values of x satisfying the equation 9^(2log(9)...

    Text Solution

    |

  18. If log(16)(log(root(4)(3))(log(root(3)(5))(x)))=(1)/(2), find x.

    Text Solution

    |

  19. The value [(1)/(6)((2log(10)(1728))/(1+(1)/(2)log(10)(0.36)+(1)/(3)log...

    Text Solution

    |