Home
Class 12
MATHS
If log(5)((a+b)/(3))=(log(5)a+log(5)b)/...

If `log_(5)((a+b)/(3))=(log_(5)a+log_(5)b)/(2),"then" (a^(4)+b^(4))/(a^(2)b^(2))=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_5\left(\frac{a+b}{3}\right) = \frac{\log_5 a + \log_5 b}{2} \), we will follow these steps: ### Step 1: Rewrite the equation using properties of logarithms We start with the given equation: \[ \log_5\left(\frac{a+b}{3}\right) = \frac{\log_5 a + \log_5 b}{2} \] Using the property of logarithms that states \( \log_b x + \log_b y = \log_b (xy) \), we can rewrite the right-hand side: \[ \frac{\log_5 a + \log_5 b}{2} = \log_5\left(\sqrt{ab}\right) \] Thus, we can rewrite the equation as: \[ \log_5\left(\frac{a+b}{3}\right) = \log_5\left(\sqrt{ab}\right) \] ### Step 2: Eliminate the logarithm Since the logarithms are equal, we can set the arguments equal to each other: \[ \frac{a+b}{3} = \sqrt{ab} \] Cross-multiplying gives: \[ a + b = 3\sqrt{ab} \] ### Step 3: Square both sides To eliminate the square root, we square both sides: \[ (a + b)^2 = (3\sqrt{ab})^2 \] This simplifies to: \[ a^2 + 2ab + b^2 = 9ab \] ### Step 4: Rearranging the equation Rearranging the equation gives: \[ a^2 + b^2 + 2ab - 9ab = 0 \] This simplifies to: \[ a^2 + b^2 - 7ab = 0 \] ### Step 5: Express \(a^2 + b^2\) in terms of \(ab\) From the equation above, we can express \(a^2 + b^2\) as: \[ a^2 + b^2 = 7ab \] ### Step 6: Finding \(a^4 + b^4\) To find \(a^4 + b^4\), we use the identity: \[ a^4 + b^4 = (a^2 + b^2)^2 - 2a^2b^2 \] Substituting \(a^2 + b^2 = 7ab\): \[ a^4 + b^4 = (7ab)^2 - 2a^2b^2 = 49a^2b^2 - 2a^2b^2 = 47a^2b^2 \] ### Step 7: Divide by \(a^2b^2\) Now, we need to find: \[ \frac{a^4 + b^4}{a^2b^2} = \frac{47a^2b^2}{a^2b^2} = 47 \] Thus, the final answer is: \[ \frac{a^4 + b^4}{a^2b^2} = 47 \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|7 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|4 Videos

Similar Questions

Explore conceptually related problems

If ("log"a)/(3) = ("log"b)/(4) = ("log"c)/(5) , then ca equals

If log_(10)5=a and log_(10)3=b ,then

("log"_(2)a)/(3) = ("log"_(2)b)/(4) = ("log"_(2)c)/(5lambda) " and " a^(-3) b^(-4) c = 1 " then " lambda =

The minimum value of 'c' such that log_(b)(a^(log_(2)b))=log_(a)(b^(log_(2)b)) and log_(a) (c-(b-a)^(2))=3 , where a, b in N is :

"If" ("log"_(10)a)/(2) = ("log"_(10)b)/(3) = ("log"_(10)c)/(5) , then bc =

If log_(a)3 = 2 and log_(b)8= 3 , then log_(a)(b) is-

Which of the following numbers are non positive? (A) 5^(log_(11)7)-7(log_(11)5) (B) log_(3)(sqrt(7)-2) (C) log_(7)((1)/(2))^(-1//2) (D) log_(sqrt(2)-1) (sqrt(2)+1)/(sqrt(2)-1)

Evaluate: 2^(log_(3)5)-5^(log_(3)2)

Solve (0.5)^(log_(3)log_((1//5)))(x^(2)-4/5)gt 1 .

VIKAS GUPTA (BLACK BOOK) ENGLISH-LOGARITHMS -Exercise-5 : Subjective Type Problems
  1. The number N=6^(log(10)40). 5^(log(10)36) is a natural number ,Then su...

    Text Solution

    |

  2. The minimum value of 'c' such that log(b)(a^(log(2)b))=log(a)(b^(log(2...

    Text Solution

    |

  3. How many positive integers b have the property that log(b)729 is a pos...

    Text Solution

    |

  4. The number of negative integral values of x satisfying the inequality ...

    Text Solution

    |

  5. (6)/(5)a^((log(a)x)(log(10)a)(log(a)5))-3^(log(10)((x)/(10)))=9^(log(1...

    Text Solution

    |

  6. If log(5)((a+b)/(3))=(log(5)a+log(5)b)/(2),"then" (a^(4)+b^(4))/(a^(2...

    Text Solution

    |

  7. Let a , b , c , d be positive integers such that (log)a b=3/2a n d(log...

    Text Solution

    |

  8. The number of real values of x satisfying the equation log(10) sqrt(...

    Text Solution

    |

  9. The ordered pair (x,y) satisfying the equation x^(2)=1+6 log(4)y and...

    Text Solution

    |

  10. If log(7)log(7) sqrt(7sqrt(7sqrt(7)))=1-a log(7)2 and log(15)log(15) s...

    Text Solution

    |

  11. The number of ordered pair(s) of (x, y) satisfying the equations log...

    Text Solution

    |

  12. If log(b) n = 2 and og(n) 2b = 2, then find the value of b.

    Text Solution

    |

  13. If log(y) x + log(x) y = 2, x^(2)+y = 12 , then the value of xy is

    Text Solution

    |

  14. If x, y satisfy the equation, y^(x)=x^(y) and x=2y, then x^(2)+y^(2)=

    Text Solution

    |

  15. Find the number of real values of x satisfying the equation. log(2)(...

    Text Solution

    |

  16. If x(1), x(2)(x(1) gt x(2)) are the two solutions of the equation 3^...

    Text Solution

    |

  17. Find the number or real values of x satisfying the equation 9^(2log(9)...

    Text Solution

    |

  18. If log(16)(log(root(4)(3))(log(root(3)(5))(x)))=(1)/(2), find x.

    Text Solution

    |

  19. The value [(1)/(6)((2log(10)(1728))/(1+(1)/(2)log(10)(0.36)+(1)/(3)log...

    Text Solution

    |