Home
Class 12
MATHS
If log(7)log(7) sqrt(7sqrt(7sqrt(7)))=1-...

If `log_(7)log_(7) sqrt(7sqrt(7sqrt(7)))=1-a log_(7)2 and log_(15)log_(15) sqrt(15sqrt(15sqrt(15sqrt(15))))=1-b log_(15)2`, then `a+b=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given in the problem, we will break it down step by step. ### Step 1: Simplifying the first logarithmic expression We start with the expression: \[ \log_{7} \log_{7} \sqrt{7 \sqrt{7 \sqrt{7}}} = 1 - a \log_{7} 2 \] First, we simplify the inner expression: \[ \sqrt{7 \sqrt{7 \sqrt{7}}} = \sqrt{7 \cdot 7^{1/2} \cdot 7^{1/4}} = \sqrt{7^{1 + 1/2 + 1/4}} = \sqrt{7^{(4/4 + 2/4 + 1/4)}} = \sqrt{7^{7/4}} = 7^{7/8} \] Thus, we can rewrite the equation as: \[ \log_{7} \log_{7} (7^{7/8}) = 1 - a \log_{7} 2 \] ### Step 2: Evaluating the logarithm Using the property of logarithms: \[ \log_{b} (b^{x}) = x \] we have: \[ \log_{7} (7^{7/8}) = \frac{7}{8} \] So, substituting this back into our equation gives: \[ \log_{7} \left( \frac{7}{8} \right) = 1 - a \log_{7} 2 \] ### Step 3: Simplifying the logarithm of a fraction Using the property of logarithms: \[ \log_{b} \left( \frac{x}{y} \right) = \log_{b} x - \log_{b} y \] we can write: \[ \log_{7} \left( \frac{7}{8} \right) = \log_{7} 7 - \log_{7} 8 = 1 - \log_{7} (2^{3}) = 1 - 3 \log_{7} 2 \] Thus, we have: \[ 1 - 3 \log_{7} 2 = 1 - a \log_{7} 2 \] ### Step 4: Equating and solving for \(a\) From the equation: \[ 1 - 3 \log_{7} 2 = 1 - a \log_{7} 2 \] we can simplify to: \[ -3 \log_{7} 2 = -a \log_{7} 2 \] Dividing both sides by \(-\log_{7} 2\) (assuming \(\log_{7} 2 \neq 0\)): \[ a = 3 \] ### Step 5: Solving the second logarithmic expression Now we repeat the same process for the second equation: \[ \log_{15} \log_{15} \sqrt{15 \sqrt{15 \sqrt{15 \sqrt{15}}}} = 1 - b \log_{15} 2 \] Simplifying the inner expression: \[ \sqrt{15 \sqrt{15 \sqrt{15 \sqrt{15}}}} = \sqrt{15^{1 + 1/2 + 1/4 + 1/8}} = \sqrt{15^{(8/8 + 4/8 + 2/8 + 1/8)}} = \sqrt{15^{15/8}} = 15^{15/16} \] Thus, we can rewrite the equation as: \[ \log_{15} \log_{15} (15^{15/16}) = 1 - b \log_{15} 2 \] ### Step 6: Evaluating the logarithm Using the property of logarithms: \[ \log_{15} (15^{15/16}) = \frac{15}{16} \] So we substitute back into our equation: \[ \log_{15} \left( \frac{15}{16} \right) = 1 - b \log_{15} 2 \] ### Step 7: Simplifying the logarithm of a fraction Using the logarithm property: \[ \log_{15} \left( \frac{15}{16} \right) = \log_{15} 15 - \log_{15} 16 = 1 - \log_{15} (2^{4}) = 1 - 4 \log_{15} 2 \] Thus, we have: \[ 1 - 4 \log_{15} 2 = 1 - b \log_{15} 2 \] ### Step 8: Equating and solving for \(b\) From the equation: \[ 1 - 4 \log_{15} 2 = 1 - b \log_{15} 2 \] we can simplify to: \[ -4 \log_{15} 2 = -b \log_{15} 2 \] Dividing both sides by \(-\log_{15} 2\): \[ b = 4 \] ### Step 9: Finding \(a + b\) Now that we have \(a = 3\) and \(b = 4\), we can find: \[ a + b = 3 + 4 = 7 \] ### Final Answer Thus, the final answer is: \[ \boxed{7} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|7 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|4 Videos

Similar Questions

Explore conceptually related problems

log_7log_7sqrt(7(sqrt(7sqrt(7))))=

Prove that log_(7) log_(7)sqrt(7sqrt((7sqrt7))) = 1-3 log_(7) 2 .

2^(log_(sqrt(2))15)=

Solve : log_7log_5 (sqrt(x+5)+sqrt(x))=0

log((sqrt2-1)/(sqrt2+1))

If log_(a)5=x and log_(a)7=y , then log_(a)sqrt(1,4)=

If log_(2)m=sqrt(7)andlog_(7)n=sqrt(2) ,mn=

log_2log_2(sqrt(sqrt(...sqrtsqrt2)))/(nTimes) is equal to

Solve log_(2)(2sqrt(17-2x))=1 - log_(1//2)(x-1) .

If log_(x)log_(18) (sqrt(2)+sqrt(8)) = (-1)/(2) . Then the value of 'x'.

VIKAS GUPTA (BLACK BOOK) ENGLISH-LOGARITHMS -Exercise-5 : Subjective Type Problems
  1. The number N=6^(log(10)40). 5^(log(10)36) is a natural number ,Then su...

    Text Solution

    |

  2. The minimum value of 'c' such that log(b)(a^(log(2)b))=log(a)(b^(log(2...

    Text Solution

    |

  3. How many positive integers b have the property that log(b)729 is a pos...

    Text Solution

    |

  4. The number of negative integral values of x satisfying the inequality ...

    Text Solution

    |

  5. (6)/(5)a^((log(a)x)(log(10)a)(log(a)5))-3^(log(10)((x)/(10)))=9^(log(1...

    Text Solution

    |

  6. If log(5)((a+b)/(3))=(log(5)a+log(5)b)/(2),"then" (a^(4)+b^(4))/(a^(2...

    Text Solution

    |

  7. Let a , b , c , d be positive integers such that (log)a b=3/2a n d(log...

    Text Solution

    |

  8. The number of real values of x satisfying the equation log(10) sqrt(...

    Text Solution

    |

  9. The ordered pair (x,y) satisfying the equation x^(2)=1+6 log(4)y and...

    Text Solution

    |

  10. If log(7)log(7) sqrt(7sqrt(7sqrt(7)))=1-a log(7)2 and log(15)log(15) s...

    Text Solution

    |

  11. The number of ordered pair(s) of (x, y) satisfying the equations log...

    Text Solution

    |

  12. If log(b) n = 2 and og(n) 2b = 2, then find the value of b.

    Text Solution

    |

  13. If log(y) x + log(x) y = 2, x^(2)+y = 12 , then the value of xy is

    Text Solution

    |

  14. If x, y satisfy the equation, y^(x)=x^(y) and x=2y, then x^(2)+y^(2)=

    Text Solution

    |

  15. Find the number of real values of x satisfying the equation. log(2)(...

    Text Solution

    |

  16. If x(1), x(2)(x(1) gt x(2)) are the two solutions of the equation 3^...

    Text Solution

    |

  17. Find the number or real values of x satisfying the equation 9^(2log(9)...

    Text Solution

    |

  18. If log(16)(log(root(4)(3))(log(root(3)(5))(x)))=(1)/(2), find x.

    Text Solution

    |

  19. The value [(1)/(6)((2log(10)(1728))/(1+(1)/(2)log(10)(0.36)+(1)/(3)log...

    Text Solution

    |