Home
Class 12
MATHS
If x(1), x(2)(x(1) gt x(2)) are the two ...

If `x_(1), x_(2)(x_(1) gt x_(2))` are the two solutions of the equation
`3^(log_(2)x)-12(x^(log_(16)9))=log_(3)((1)/(3))^(3^(3))`, then the value of `x_(1)-2x_(2)` is :

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 3^{\log_2 x} - 12 \left( x^{\log_{16} 9} \right) = \log_3 \left( \frac{1}{3} \right)^{3^3} \), we will follow these steps: ### Step 1: Simplify the Right Side The right side of the equation can be simplified as follows: \[ \log_3 \left( \frac{1}{3} \right)^{3^3} = \log_3 \left( 3^{-27} \right) = -27 \] Thus, the equation becomes: \[ 3^{\log_2 x} - 12 \left( x^{\log_{16} 9} \right) = -27 \] ### Step 2: Simplify the Left Side Next, we will simplify the term \( x^{\log_{16} 9} \): \[ \log_{16} 9 = \frac{\log_2 9}{\log_2 16} = \frac{\log_2 9}{4} \] So, we can rewrite \( x^{\log_{16} 9} \) as: \[ x^{\log_{16} 9} = x^{\frac{\log_2 9}{4}} = \left( x^{\log_2 9} \right)^{\frac{1}{4}} = \sqrt[4]{x^{\log_2 9}} \] ### Step 3: Substitute \( t = \log_2 x \) Let \( t = \log_2 x \). Then, we can rewrite \( 3^{\log_2 x} \) as \( 3^t \) and \( x^{\log_{16} 9} \) as \( 2^{t \cdot \frac{\log_2 9}{4}} \): \[ 3^t - 12 \cdot 2^{\frac{t \cdot \log_2 9}{4}} = -27 \] ### Step 4: Rewrite the Equation Now, we can rewrite the equation in terms of \( t \): \[ 3^t - 12 \cdot 2^{\frac{t \cdot \log_2 9}{4}} + 27 = 0 \] ### Step 5: Substitute \( a = 3^{\frac{t}{2}} \) Let \( a = 3^{\frac{t}{2}} \). Then \( 3^t = a^2 \) and \( 2^{\frac{t \cdot \log_2 9}{4}} = 3^{\frac{t}{2}} \) can be expressed as: \[ a^2 - 12a + 27 = 0 \] ### Step 6: Solve the Quadratic Equation Using the quadratic formula \( a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ a = \frac{12 \pm \sqrt{(-12)^2 - 4 \cdot 1 \cdot 27}}{2 \cdot 1} = \frac{12 \pm \sqrt{144 - 108}}{2} = \frac{12 \pm \sqrt{36}}{2} = \frac{12 \pm 6}{2} \] Thus, we have: \[ a = \frac{18}{2} = 9 \quad \text{or} \quad a = \frac{6}{2} = 3 \] ### Step 7: Find \( t \) Now, we can find \( t \): 1. If \( a = 9 \): \[ 3^{\frac{t}{2}} = 9 \implies \frac{t}{2} = 2 \implies t = 4 \] 2. If \( a = 3 \): \[ 3^{\frac{t}{2}} = 3 \implies \frac{t}{2} = 1 \implies t = 2 \] ### Step 8: Find \( x \) Now, substituting \( t \) back to find \( x \): 1. If \( t = 4 \): \[ x = 2^4 = 16 \] 2. If \( t = 2 \): \[ x = 2^2 = 4 \] ### Step 9: Calculate \( x_1 - 2x_2 \) Let \( x_1 = 16 \) and \( x_2 = 4 \): \[ x_1 - 2x_2 = 16 - 2 \cdot 4 = 16 - 8 = 8 \] ### Final Answer The value of \( x_1 - 2x_2 \) is \( \boxed{8} \).
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|7 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|4 Videos

Similar Questions

Explore conceptually related problems

The solution set of the equation (x+1)log_(3)^(2)x+4xlog_(3)-16=0is

Let x_(1) and x_(2) be two solutions of the equalition log_(x)(3x^(log_(5)x)+4) = 2log_(5)x , then the product x_(1)x_(2) is equal to

Solve the equation x^(log_(x)(x+3)^(2))=16 .

The sum of all the roots of the equation log_(2)(x-1)+log_(2)(x+2)-log_(2)(3x-1)=log_(2)4

The sum of solution of the equation log_(10)(3x^(2) +12x +19) - log_(10)(3x +4) = 1 is

The number of solutions of the equation log_(3)(3+sqrt(x))+log_(3)(1+x^(2))=0 , is

The number of real solution(s) of the equation 9^(log_(3)(log_(e )x))=log_(e )x-(log_(e )x)^(2)+1 is equal to

Solve the equation: log_(2x+3)x^(2) lt log_(2x)(2x+3)

Solve the equationi log_((x^(2)-1))(x^(3)+6)=log_((x^(2)-1))(2x^(2)+5x)

If x_(1) and x_(2) are solution of the equation log_(5)(log_(64)|x|+(25)^(x)-(1)/(2))=2x , then

VIKAS GUPTA (BLACK BOOK) ENGLISH-LOGARITHMS -Exercise-5 : Subjective Type Problems
  1. The number N=6^(log(10)40). 5^(log(10)36) is a natural number ,Then su...

    Text Solution

    |

  2. The minimum value of 'c' such that log(b)(a^(log(2)b))=log(a)(b^(log(2...

    Text Solution

    |

  3. How many positive integers b have the property that log(b)729 is a pos...

    Text Solution

    |

  4. The number of negative integral values of x satisfying the inequality ...

    Text Solution

    |

  5. (6)/(5)a^((log(a)x)(log(10)a)(log(a)5))-3^(log(10)((x)/(10)))=9^(log(1...

    Text Solution

    |

  6. If log(5)((a+b)/(3))=(log(5)a+log(5)b)/(2),"then" (a^(4)+b^(4))/(a^(2...

    Text Solution

    |

  7. Let a , b , c , d be positive integers such that (log)a b=3/2a n d(log...

    Text Solution

    |

  8. The number of real values of x satisfying the equation log(10) sqrt(...

    Text Solution

    |

  9. The ordered pair (x,y) satisfying the equation x^(2)=1+6 log(4)y and...

    Text Solution

    |

  10. If log(7)log(7) sqrt(7sqrt(7sqrt(7)))=1-a log(7)2 and log(15)log(15) s...

    Text Solution

    |

  11. The number of ordered pair(s) of (x, y) satisfying the equations log...

    Text Solution

    |

  12. If log(b) n = 2 and og(n) 2b = 2, then find the value of b.

    Text Solution

    |

  13. If log(y) x + log(x) y = 2, x^(2)+y = 12 , then the value of xy is

    Text Solution

    |

  14. If x, y satisfy the equation, y^(x)=x^(y) and x=2y, then x^(2)+y^(2)=

    Text Solution

    |

  15. Find the number of real values of x satisfying the equation. log(2)(...

    Text Solution

    |

  16. If x(1), x(2)(x(1) gt x(2)) are the two solutions of the equation 3^...

    Text Solution

    |

  17. Find the number or real values of x satisfying the equation 9^(2log(9)...

    Text Solution

    |

  18. If log(16)(log(root(4)(3))(log(root(3)(5))(x)))=(1)/(2), find x.

    Text Solution

    |

  19. The value [(1)/(6)((2log(10)(1728))/(1+(1)/(2)log(10)(0.36)+(1)/(3)log...

    Text Solution

    |