Home
Class 12
MATHS
("cos"^(4)(pi)/(24)-"sin"^(4)(pi)/(24)) ...

`("cos"^(4)(pi)/(24)-"sin"^(4)(pi)/(24))` equals :

A

`(1)/(sqrt(2))`

B

`(sqrt(6)-sqrt(2))/(4)`

C

`(sqrt(6)+sqrt(2))/(4)`

D

`(sqrt(3)+1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos^4\left(\frac{\pi}{24}\right) - \sin^4\left(\frac{\pi}{24}\right) \), we can use the difference of squares identity. Here’s the step-by-step solution: ### Step 1: Recognize the difference of squares The expression can be rewritten using the identity \( a^2 - b^2 = (a - b)(a + b) \): \[ \cos^4\left(\frac{\pi}{24}\right) - \sin^4\left(\frac{\pi}{24}\right) = \left(\cos^2\left(\frac{\pi}{24}\right) - \sin^2\left(\frac{\pi}{24}\right)\right)\left(\cos^2\left(\frac{\pi}{24}\right) + \sin^2\left(\frac{\pi}{24}\right)\right) \] ### Step 2: Simplify using the Pythagorean identity From the Pythagorean identity, we know that: \[ \cos^2\theta + \sin^2\theta = 1 \] Thus, we can simplify the expression: \[ \cos^2\left(\frac{\pi}{24}\right) + \sin^2\left(\frac{\pi}{24}\right) = 1 \] So, our expression simplifies to: \[ \cos^4\left(\frac{\pi}{24}\right) - \sin^4\left(\frac{\pi}{24}\right) = \left(\cos^2\left(\frac{\pi}{24}\right) - \sin^2\left(\frac{\pi}{24}\right)\right)(1) \] This simplifies to: \[ \cos^2\left(\frac{\pi}{24}\right) - \sin^2\left(\frac{\pi}{24}\right) \] ### Step 3: Use the double angle identity We can use the double angle identity for cosine, which states: \[ \cos(2\theta) = \cos^2\theta - \sin^2\theta \] In our case, we have: \[ \cos^2\left(\frac{\pi}{24}\right) - \sin^2\left(\frac{\pi}{24}\right) = \cos\left(2 \cdot \frac{\pi}{24}\right) = \cos\left(\frac{\pi}{12}\right) \] ### Step 4: Find the value of \( \cos\left(\frac{\pi}{12}\right) \) To find \( \cos\left(\frac{\pi}{12}\right) \), we can express \( \frac{\pi}{12} \) as \( \frac{\pi}{4} - \frac{\pi}{6} \). Using the cosine subtraction formula: \[ \cos(a - b) = \cos a \cos b + \sin a \sin b \] Let \( a = \frac{\pi}{4} \) and \( b = \frac{\pi}{6} \): \[ \cos\left(\frac{\pi}{12}\right) = \cos\left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{6}\right) + \sin\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{6}\right) \] ### Step 5: Substitute known values Now substituting the known values: \[ \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}, \quad \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}, \quad \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}, \quad \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \] Thus, we have: \[ \cos\left(\frac{\pi}{12}\right) = \left(\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}\right) + \left(\frac{1}{\sqrt{2}} \cdot \frac{1}{2}\right) \] This simplifies to: \[ \cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{3}}{2\sqrt{2}} + \frac{1}{2\sqrt{2}} = \frac{\sqrt{3} + 1}{2\sqrt{2}} \] ### Step 6: Final simplification To express this in a more standard form, we multiply the numerator and denominator by \( \sqrt{2} \): \[ \cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{2}(\sqrt{3} + 1)}{4} = \frac{\sqrt{6} + \sqrt{2}}{4} \] ### Conclusion Thus, the final answer is: \[ \cos^4\left(\frac{\pi}{24}\right) - \sin^4\left(\frac{\pi}{24}\right) = \frac{\sqrt{6} + \sqrt{2}}{4} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

sin^(-1)(cos((5pi)/4)) is equal to

The value of sin^(6)((pi)/(49))+cos^(6)((pi)/(49))-1+3sin^(2)((pi)/(49))cos^(2)((pi)/(49)) is equal to

The fundamental period of the function f(x)=4cos^4((x-pi)/(4pi^2))-2cos((x-pi)/(2pi^2)) is equal to :

The value of lim_(x to (pi)/(4)) ("sin" x - cos x)/((x - (pi)/(4))) equals

Prove that: cos ^(4) ""(pi)/(8) + cos ^(4) ""(3pi)/(8) + sin ^(4) "" (5pi)/(8) + sin ^(4)""(7pi)/(8) = 3/2.

4. cos^-1(cos((7pi)/4)) is equals to:

The value of sum_(k=1)^(13) (1)/(sin((pi)/(4) + ((k-1)pi)/(6)) sin ((pi)/(4)+ (kpi)/(6))) is equal to

Using the identity sin^(4) x=3/8-1/2 cos 2x+1/8 cos 4x or otherwise, if the value of sin^(4)(pi/7)+sin^(4)((3pi)/(7))+sin^(4)((5pi)/(7))=a/b , where a and b are coprime, find the value of (a-b) .

"sin^(2)(pi)/(6)+cos^(2)(pi)/(3)-tan^(2)(pi)/(4)=-(1)/(2)"

cos((pi)/(4)-x)cos((pi)/(4)-y)-sin((pi)/(4)-x)sin((pi)/(4)-y)=sin(x+y)

VIKAS GUPTA (BLACK BOOK) ENGLISH-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. ("cos"^(4)(pi)/(24)-"sin"^(4)(pi)/(24)) equals :

    Text Solution

    |

  2. Let P=(sin80^(@)sin65^(@) sin35^(@))/(sin20^(@)+sin50^(@)+sin110^(@))...

    Text Solution

    |

  3. The value of expression (1-cot23^(@))(1-cot22^(@)) is equal to :

    Text Solution

    |

  4. If tanA and tanB the roots of the quadratic equation, 4x^(2)-7x+1=0 th...

    Text Solution

    |

  5. A(1)A(2)A(3)………A(18) is a regular 18 sided polygon. B is an external p...

    Text Solution

    |

  6. If 10sin^4 alpha +15cos^4alpha=6 then the value of 9cosec^4 alpha + 8...

    Text Solution

    |

  7. The value of (1+tan\ (3pi)/8*tan\ pi/8)+(1+tan\ (5pi)/8*tan\ (3pi)/8)+...

    Text Solution

    |

  8. If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alph...

    Text Solution

    |

  9. Given that for a, b, c, d in R, If a sec(200^(@))-c tan (200^(@))=d a...

    Text Solution

    |

  10. The expression 2"cos"(pi)/(17)*"cos"(9pi)/(17)+"cos"(7pi)/(17)+"cos"(9...

    Text Solution

    |

  11. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  12. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  13. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  14. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  15. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  16. Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

    Text Solution

    |

  17. 3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)x+cos^(6)x)=.....

    Text Solution

    |

  18. Q. x=a satisfy the equation 3^(sin 2x+2 cos^2 x)+3^(1-sin 2x+2 sin^ 2x...

    Text Solution

    |

  19. If y=(sin theta+"cosec" theta)^(2) +(cos theta+sec theta)^(2), then m...

    Text Solution

    |

  20. If tan20^0+tan40^0+tan80^0-tan60^0= lambdasin40^0, find lambda.

    Text Solution

    |

  21. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |