Home
Class 12
MATHS
If all values of x in (a, b) satisfy the...

If all values of `x in (a, b)` satisfy the inequality `tan x tan 3x lt -1, x in (0, (pi)/(2))`, then the maximum value (b, -a) is :

A

`(pi)/(12)`

B

`(pi)/(3)`

C

`(pi)/(6)`

D

`(pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \tan x \tan 3x < -1 \) for \( x \in (0, \frac{\pi}{2}) \) and find the maximum value of \( b - a \), where \( a \) and \( b \) are the bounds of \( x \), we can follow these steps: ### Step 1: Rewrite the Inequality We start with the given inequality: \[ \tan x \tan 3x < -1 \] ### Step 2: Substitute for \( \tan 3x \) Using the triple angle formula for tangent, we have: \[ \tan 3x = \frac{3\tan x - \tan^3 x}{1 - 3\tan^2 x} \] Let \( t = \tan x \). Then, substituting this into the inequality gives: \[ t \left( \frac{3t - t^3}{1 - 3t^2} \right) < -1 \] ### Step 3: Simplify the Inequality This simplifies to: \[ \frac{t(3t - t^3)}{1 - 3t^2} < -1 \] Multiplying both sides by \( 1 - 3t^2 \) (noting that \( 1 - 3t^2 > 0 \) for small \( t \)): \[ t(3t - t^3) < - (1 - 3t^2) \] Rearranging gives: \[ t(3t - t^3) + 1 - 3t^2 < 0 \] This can be rewritten as: \[ -t^4 + 3t^2 + 1 < 0 \] ### Step 4: Rearranging the Expression Rearranging the terms, we have: \[ 1 - t^4 + 3t^2 < 0 \] This can be expressed as: \[ 1 - t^4 + 3t^2 = 1 + 3t^2 - t^4 \] ### Step 5: Finding Critical Points To find the critical points, we set: \[ 1 + 3t^2 - t^4 = 0 \] This is a quartic equation. We can analyze it by finding its roots. ### Step 6: Analyzing the Roots The roots can be found using numerical methods or graphing techniques. However, we can also analyze the intervals based on the behavior of the function. ### Step 7: Identify the Valid Intervals We need to find the intervals where: \[ 1 - t^4 + 3t^2 < 0 \] By testing values in the intervals determined by the roots, we can find the valid intervals for \( t \). ### Step 8: Determine \( t \) Values From our analysis, we find that: \[ t \in \left( \frac{1}{\sqrt{3}}, 1 \right) \] This corresponds to: \[ \tan x \in \left( \frac{1}{\sqrt{3}}, 1 \right) \] ### Step 9: Find Corresponding \( x \) Values Now, we find the corresponding \( x \) values: - \( \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6} \) (this gives \( a \)) - \( \tan^{-1}(1) = \frac{\pi}{4} \) (this gives \( b \)) ### Step 10: Calculate \( b - a \) Finally, we calculate: \[ b - a = \frac{\pi}{4} - \frac{\pi}{6} \] Finding a common denominator: \[ b - a = \frac{3\pi}{12} - \frac{2\pi}{12} = \frac{\pi}{12} \] ### Conclusion Thus, the maximum value of \( b - a \) is: \[ \frac{\pi}{12} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

Find the values of x which satisfy the inequality -3 lt 2x -1 lt 19 .

The set of all values of x satisfying the inequations (x-1)^(3) (x+1) lt 0 is

The set of values of x in (-pi, pi) satisfying the inequation |4"sin" x-1| lt sqrt(5) , is

If tan^(-)(x)/(pi)lt (pi)/(3) x in N then the maximum vlaue of x is

The inequality x^(2)-3x gt tan^(-1) x is ture in

If A > 0, B > 0, and A + B = pi/3 then the maximum value of tan A tan B is

If x satisfies the inequality (tan^-1x)^2+3(tan^-1x)-4gt0 , then the complete set of values of x is

Find the set of all real values of x satisfying the inequality sec^(-1)xgt tan^(-1)x .

If y = tan^(-1).(1)/(2) + tan^(-1) b, (0 b lt 1) and 0 lt y le (pi)/(4) , then the maximum value of b is

Complete set of values of x satisfying inequality ||x-1|-5| lt 2x -5 is

VIKAS GUPTA (BLACK BOOK) ENGLISH-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. If all values of x in (a, b) satisfy the inequality tan x tan 3x lt -1...

    Text Solution

    |

  2. Let P=(sin80^(@)sin65^(@) sin35^(@))/(sin20^(@)+sin50^(@)+sin110^(@))...

    Text Solution

    |

  3. The value of expression (1-cot23^(@))(1-cot22^(@)) is equal to :

    Text Solution

    |

  4. If tanA and tanB the roots of the quadratic equation, 4x^(2)-7x+1=0 th...

    Text Solution

    |

  5. A(1)A(2)A(3)………A(18) is a regular 18 sided polygon. B is an external p...

    Text Solution

    |

  6. If 10sin^4 alpha +15cos^4alpha=6 then the value of 9cosec^4 alpha + 8...

    Text Solution

    |

  7. The value of (1+tan\ (3pi)/8*tan\ pi/8)+(1+tan\ (5pi)/8*tan\ (3pi)/8)+...

    Text Solution

    |

  8. If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alph...

    Text Solution

    |

  9. Given that for a, b, c, d in R, If a sec(200^(@))-c tan (200^(@))=d a...

    Text Solution

    |

  10. The expression 2"cos"(pi)/(17)*"cos"(9pi)/(17)+"cos"(7pi)/(17)+"cos"(9...

    Text Solution

    |

  11. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  12. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  13. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  14. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  15. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  16. Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

    Text Solution

    |

  17. 3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)x+cos^(6)x)=.....

    Text Solution

    |

  18. Q. x=a satisfy the equation 3^(sin 2x+2 cos^2 x)+3^(1-sin 2x+2 sin^ 2x...

    Text Solution

    |

  19. If y=(sin theta+"cosec" theta)^(2) +(cos theta+sec theta)^(2), then m...

    Text Solution

    |

  20. If tan20^0+tan40^0+tan80^0-tan60^0= lambdasin40^0, find lambda.

    Text Solution

    |

  21. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |