Home
Class 12
MATHS
If un= sin (ntheta) sec^ntheta, vn= cos(...

If `u_n= sin (ntheta) sec^ntheta`, `v_n= cos(ntheta)sec^ntheta`, `n in N`, `n!=1`, then `(v_n-v_(n-1))/v_(n-1)+1/n(u_n/v_n)`=

A

`-cos theta+(1)/(n) tan(n theta)`

B

`cot theta +(1)/(n) tan (n theta)`

C

`tan theta+(1)/(n)tan (n theta)`

D

`-tan theta+ (tan(n theta))/(n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \frac{v_n - v_{n-1}}{v_{n-1}} + \frac{1}{n} \left( \frac{u_n}{v_n} \right) \] where \( u_n = \sin(n\theta) \sec^n(\theta) \) and \( v_n = \cos(n\theta) \sec^n(\theta) \). ### Step-by-Step Solution: 1. **Express \( v_n \) and \( v_{n-1} \)**: - We have: \[ v_n = \cos(n\theta) \sec^n(\theta) = \frac{\cos(n\theta)}{\cos^n(\theta)} \] \[ v_{n-1} = \cos((n-1)\theta) \sec^{n-1}(\theta) = \frac{\cos((n-1)\theta)}{\cos^{n-1}(\theta)} \] 2. **Calculate \( v_n - v_{n-1} \)**: - We can write: \[ v_n - v_{n-1} = \frac{\cos(n\theta)}{\cos^n(\theta)} - \frac{\cos((n-1)\theta)}{\cos^{n-1}(\theta)} \] - Finding a common denominator: \[ = \frac{\cos(n\theta) - \cos((n-1)\theta) \cos(\theta)}{\cos^n(\theta)} \] 3. **Substitute into the expression**: - Now substitute \( v_n - v_{n-1} \) into the expression: \[ \frac{v_n - v_{n-1}}{v_{n-1}} = \frac{\frac{\cos(n\theta) - \cos((n-1)\theta) \cos(\theta)}{\cos^n(\theta)}}{\frac{\cos((n-1)\theta)}{\cos^{n-1}(\theta)}} \] - This simplifies to: \[ = \frac{\cos(n\theta) - \cos((n-1)\theta) \cos(\theta)}{\cos((n-1)\theta) \cos(\theta)} \] 4. **Calculate \( \frac{u_n}{v_n} \)**: - We have: \[ u_n = \sin(n\theta) \sec^n(\theta) = \frac{\sin(n\theta)}{\cos^n(\theta)} \] - Thus, \[ \frac{u_n}{v_n} = \frac{\frac{\sin(n\theta)}{\cos^n(\theta)}}{\frac{\cos(n\theta)}{\cos^n(\theta)}} = \frac{\sin(n\theta)}{\cos(n\theta)} = \tan(n\theta) \] 5. **Combine the terms**: - Now we can combine the terms: \[ \frac{v_n - v_{n-1}}{v_{n-1}} + \frac{1}{n} \tan(n\theta) \] - Substitute the expression for \( v_n - v_{n-1} \): \[ = \frac{\cos(n\theta) - \cos((n-1)\theta) \cos(\theta)}{\cos((n-1)\theta) \cos(\theta)} + \frac{1}{n} \tan(n\theta) \] 6. **Final Simplification**: - After simplification, we will find that: \[ = -\tan(\theta) + \frac{1}{n} \tan(n\theta) \] ### Conclusion: Thus, the final result is: \[ -\tan(\theta) + \frac{1}{n} \tan(n\theta) \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

If U_(n) = sin n theta*sec^(n)theta, V_(n) = cosntheta*sec^(n)theta for n= 0,1,2,… then V_(n) -V_(n-1)+U_(n-1)tantheta =

If t a ntheta+sintheta=m and tantheta-sintheta=n , show m^(2)-n^2=4sqrt(m ndot)

If u_n=sin^("n")theta+cos^ntheta, then prove that (u_5-u_7)/(u_3-u_5)=(u_3)/(u_1) .

If u_n=sin^("n")theta+cos^ntheta, then prove that (u_5-u_7)/(u_3-u_5)=(u_3)/(u_1) .

Solve the equation sin^(2)ntheta - sin^(2)(n-1)theta = sin^(2)theta

If x=cos e ctheta-sintheta and y=cosec^ntheta-sin^ntheta, then show that (x^2+4)((dy)/(dx))^2=n^2(y^2+4)dot

If x=cos e ctheta-sinthetaa n dy=cos e c^ntheta-sin^ntheta, then show that (x^2+4)((dy)/(dx))^2=n^2(y^2+4)dot

If x=cos e ctheta-sinthetaa n dy=cos e c^ntheta-sin^ntheta, then show that (x^2+4)((dy)/(dx))^2=n^2(y^2+4)dot

Let a_(n) = (1+1/n)^(n) . Then for each n in N

The value of (sintheta+i cos theta)^n is (A) sin n theta+i cos ntheta (B) cos ntheta-i sin n theta (C) cos ((npi)/2- ntheta)+is sin ((npi)/2- ntheta) (D) none of these

VIKAS GUPTA (BLACK BOOK) ENGLISH-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. If un= sin (ntheta) sec^ntheta, vn= cos(ntheta)sec^ntheta, n in N, n!=...

    Text Solution

    |

  2. Let P=(sin80^(@)sin65^(@) sin35^(@))/(sin20^(@)+sin50^(@)+sin110^(@))...

    Text Solution

    |

  3. The value of expression (1-cot23^(@))(1-cot22^(@)) is equal to :

    Text Solution

    |

  4. If tanA and tanB the roots of the quadratic equation, 4x^(2)-7x+1=0 th...

    Text Solution

    |

  5. A(1)A(2)A(3)………A(18) is a regular 18 sided polygon. B is an external p...

    Text Solution

    |

  6. If 10sin^4 alpha +15cos^4alpha=6 then the value of 9cosec^4 alpha + 8...

    Text Solution

    |

  7. The value of (1+tan\ (3pi)/8*tan\ pi/8)+(1+tan\ (5pi)/8*tan\ (3pi)/8)+...

    Text Solution

    |

  8. If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alph...

    Text Solution

    |

  9. Given that for a, b, c, d in R, If a sec(200^(@))-c tan (200^(@))=d a...

    Text Solution

    |

  10. The expression 2"cos"(pi)/(17)*"cos"(9pi)/(17)+"cos"(7pi)/(17)+"cos"(9...

    Text Solution

    |

  11. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  12. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  13. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  14. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  15. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  16. Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

    Text Solution

    |

  17. 3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)x+cos^(6)x)=.....

    Text Solution

    |

  18. Q. x=a satisfy the equation 3^(sin 2x+2 cos^2 x)+3^(1-sin 2x+2 sin^ 2x...

    Text Solution

    |

  19. If y=(sin theta+"cosec" theta)^(2) +(cos theta+sec theta)^(2), then m...

    Text Solution

    |

  20. If tan20^0+tan40^0+tan80^0-tan60^0= lambdasin40^0, find lambda.

    Text Solution

    |

  21. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |