Home
Class 12
MATHS
If a cos^ 3 3theta + b cos^4 theta = 16...

If `a cos^ 3 3theta + b cos^4 theta = 16 cos^6 theta + 9 cos^2 theta` is an identity then-

A

`a=1, b=24`

B

`a=3, b=24`

C

`a=4, b=2`

D

`a=7, b=18`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( a \cos^3(3\theta) + b \cos^4(\theta) = 16 \cos^6(\theta) + 9 \cos^2(\theta) \) and find the values of \( a \) and \( b \), we will follow these steps: ### Step 1: Set up the equation We start with the equation given in the problem: \[ a \cos^3(3\theta) + b \cos^4(\theta) = 16 \cos^6(\theta) + 9 \cos^2(\theta) \] ### Step 2: Substitute \( \theta = 0 \) Substituting \( \theta = 0 \): - \( \cos(0) = 1 \) - \( \cos(3 \cdot 0) = 1 \) The equation becomes: \[ a \cdot 1^3 + b \cdot 1^4 = 16 \cdot 1^6 + 9 \cdot 1^2 \] This simplifies to: \[ a + b = 16 + 9 \] Thus, we have: \[ a + b = 25 \quad \text{(Equation 1)} \] ### Step 3: Substitute \( \theta = \frac{\pi}{3} \) Next, we substitute \( \theta = \frac{\pi}{3} \): - \( \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \) - \( \cos(3 \cdot \frac{\pi}{3}) = \cos(\pi) = -1 \) The equation becomes: \[ a \cdot (-1)^3 + b \cdot \left(\frac{1}{2}\right)^4 = 16 \cdot \left(\frac{1}{2}\right)^6 + 9 \cdot \left(\frac{1}{2}\right)^2 \] This simplifies to: \[ -a + b \cdot \frac{1}{16} = 16 \cdot \frac{1}{64} + 9 \cdot \frac{1}{4} \] Calculating the right side: \[ 16 \cdot \frac{1}{64} = \frac{1}{4} \quad \text{and} \quad 9 \cdot \frac{1}{4} = \frac{9}{4} \] So, we have: \[ -a + \frac{b}{16} = \frac{1}{4} + \frac{9}{4} = \frac{10}{4} = \frac{5}{2} \] Multiplying through by 16 to eliminate the fraction: \[ -16a + b = 40 \quad \text{(Equation 2)} \] ### Step 4: Solve the system of equations Now we have two equations: 1. \( a + b = 25 \) 2. \( -16a + b = 40 \) We can solve these equations simultaneously. From Equation 1, we express \( b \): \[ b = 25 - a \] Substituting this into Equation 2: \[ -16a + (25 - a) = 40 \] This simplifies to: \[ -17a + 25 = 40 \] Rearranging gives: \[ -17a = 40 - 25 \] \[ -17a = 15 \] \[ a = -\frac{15}{17} \] Now substituting \( a \) back into Equation 1 to find \( b \): \[ -\frac{15}{17} + b = 25 \] \[ b = 25 + \frac{15}{17} = \frac{425}{17} + \frac{15}{17} = \frac{440}{17} \] ### Final Values Thus, the values of \( a \) and \( b \) are: \[ a = -\frac{15}{17}, \quad b = \frac{440}{17} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

cos ^(2) 2 theta - sin ^(2) theta = cos theta . cos 3 theta.

Prove that cos^6 theta+ sin^6 theta= 1-3sin^2 theta cos^2 theta

lf cos 5theta-acos^5 theta + b cos^3 theta + c cos theta then c is equal to-

cos 2 theta in terms of cos 4 theta,

alphacos^2 3theta+betacos^4theta=16cos^6theta+9cos^2theta . Find alpha & beta if its a identity

If cos 5theta=a cos theta+ b cos^(3) theta+c cos^(5)theta+d , then

Prove that 16 cos ^(5) theta - 20 cos ^(3) theta + 5 cos theta = cos 5 theta.

Solve cos theta * cos 2 theta * cos 3 theta = (1)/( 4), 0 le theta le pi

If theta=20^(@) , then 8cos^(3)theta-6 cos theta is

Prove that : sin theta cos^3 theta - cos theta sin^3 theta = 1/4 sin4theta .

VIKAS GUPTA (BLACK BOOK) ENGLISH-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. If a cos^ 3 3theta + b cos^4 theta = 16 cos^6 theta + 9 cos^2 theta i...

    Text Solution

    |

  2. Let P=(sin80^(@)sin65^(@) sin35^(@))/(sin20^(@)+sin50^(@)+sin110^(@))...

    Text Solution

    |

  3. The value of expression (1-cot23^(@))(1-cot22^(@)) is equal to :

    Text Solution

    |

  4. If tanA and tanB the roots of the quadratic equation, 4x^(2)-7x+1=0 th...

    Text Solution

    |

  5. A(1)A(2)A(3)………A(18) is a regular 18 sided polygon. B is an external p...

    Text Solution

    |

  6. If 10sin^4 alpha +15cos^4alpha=6 then the value of 9cosec^4 alpha + 8...

    Text Solution

    |

  7. The value of (1+tan\ (3pi)/8*tan\ pi/8)+(1+tan\ (5pi)/8*tan\ (3pi)/8)+...

    Text Solution

    |

  8. If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alph...

    Text Solution

    |

  9. Given that for a, b, c, d in R, If a sec(200^(@))-c tan (200^(@))=d a...

    Text Solution

    |

  10. The expression 2"cos"(pi)/(17)*"cos"(9pi)/(17)+"cos"(7pi)/(17)+"cos"(9...

    Text Solution

    |

  11. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  12. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  13. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  14. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  15. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  16. Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

    Text Solution

    |

  17. 3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)x+cos^(6)x)=.....

    Text Solution

    |

  18. Q. x=a satisfy the equation 3^(sin 2x+2 cos^2 x)+3^(1-sin 2x+2 sin^ 2x...

    Text Solution

    |

  19. If y=(sin theta+"cosec" theta)^(2) +(cos theta+sec theta)^(2), then m...

    Text Solution

    |

  20. If tan20^0+tan40^0+tan80^0-tan60^0= lambdasin40^0, find lambda.

    Text Solution

    |

  21. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |