Home
Class 12
MATHS
If (sinA)/(sinB)=(sqrt(3))/(2) and (cos...

If `(sinA)/(sinB)=(sqrt(3))/(2) and (cosA)/(cosB)=(sqrt(5))/(2) , 0 lt A, B lt (pi)/(2)` then `tanA+tanB` is equal to :

A

`sqrt((3)/(5))`

B

`sqrt((5)/(3))`

C

`(sqrt(3)+sqrt(5))/(sqrt(5))`

D

`(sqrt(3)+sqrt(5))/(sqrt(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan A + \tan B \) given the relationships between \( \sin A \), \( \sin B \), \( \cos A \), and \( \cos B \). ### Step-by-Step Solution: 1. **Given Equations**: \[ \frac{\sin A}{\sin B} = \frac{\sqrt{3}}{2} \quad \text{(1)} \] \[ \frac{\cos A}{\cos B} = \frac{\sqrt{5}}{2} \quad \text{(2)} \] 2. **Divide Equation (1) by Equation (2)**: \[ \frac{\sin A}{\sin B} \div \frac{\cos A}{\cos B} = \frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{5}}{2}} \implies \frac{\tan A}{\tan B} = \frac{\sqrt{3}}{\sqrt{5}} \] Let \( k = \frac{\tan A}{\tan B} = \frac{\sqrt{3}}{\sqrt{5}} \). 3. **Express \( \tan A \) and \( \tan B \)**: \[ \tan A = k \tan B \implies \tan A = \frac{\sqrt{3}}{\sqrt{5}} \tan B \] 4. **Substituting \( \tan A \) in terms of \( \tan B \)**: From the above, we have: \[ \tan A = \frac{\sqrt{3}}{\sqrt{5}} \tan B \] 5. **Using the identity for sine and cosine**: From Equation (1): \[ \sin A = \frac{\sqrt{3}}{2} \sin B \implies \sin A = \frac{\sqrt{3}}{2} \cdot \frac{\tan B}{\sqrt{1 + \tan^2 B}} \] From Equation (2): \[ \cos A = \frac{\sqrt{5}}{2} \cos B \implies \cos A = \frac{\sqrt{5}}{2} \cdot \frac{1}{\sqrt{1 + \tan^2 B}} \] 6. **Equating the expressions**: We can express \( \sin A \) and \( \cos A \) in terms of \( \tan B \) and solve for \( \tan B \): \[ \frac{\sqrt{3}}{2} \cdot \frac{\tan B}{\sqrt{1 + \tan^2 B}} = \frac{\sqrt{5}}{2} \cdot \frac{1}{\sqrt{1 + \tan^2 B}} \] 7. **Cross-multiplying**: \[ \sqrt{3} \tan B = \sqrt{5} \] 8. **Solving for \( \tan B \)**: \[ \tan B = \frac{\sqrt{5}}{\sqrt{3}} \] 9. **Finding \( \tan A \)**: Substitute \( \tan B \) back into the equation for \( \tan A \): \[ \tan A = \frac{\sqrt{3}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{3}} = 1 \] 10. **Calculating \( \tan A + \tan B \)**: \[ \tan A + \tan B = 1 + \frac{\sqrt{5}}{\sqrt{3}} = \frac{\sqrt{3}}{\sqrt{3}} + \frac{\sqrt{5}}{\sqrt{3}} = \frac{\sqrt{3} + \sqrt{5}}{\sqrt{3}} \] ### Final Answer: \[ \tan A + \tan B = \frac{\sqrt{3} + \sqrt{5}}{\sqrt{3}} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

If (sinA)/(sinB)=(sqrt(3))/2 and (cosA)/(cosB)=(sqrt(5))/2, 0 < A, B < pi/2, then tanA+tanB is equal to

If Cos A =(sqrt(3))/(2), 0^(@) lt A lt 90^(@) , then A is equal to

If 0ltAltB ltpi, sin A+sinB=sqrt((3)/(2)) and cos A+cosB=(1)/(sqrt2), then A =

If (pi)/(2) lt theta lt (3pi)/(2) then sqrt(tan^(2)theta-sin^(2)theta) is equal to :

If (pi)/(2) lt theta lt (3pi)/(2) then sqrt(tan^(2)theta-sin^(2)theta) is equal to :

If 0ltAltBltpi, sin A-sinB=(1)/(sqrt2) and cos A-cos B=sqrt((3)/(2)) , then the value of A+B is equal to

Solve sin 3x = - (1)/(sqrt2) , 0 lt x lt 2pi.

If sinA=1/2,cosB=(sqrt(3))/2 , where pi/2 lt A lt pi and 0 lt B lt pi/2 find tan(A+B)

If 0 ltA lt(pi)/(6) and sinA+cosA=(sqrt7)/(2),"then" tan""(A)/(2)=

If (cosA)/(cosB)=n and (sinA)/(sinB)=m,then (m^(2)-n^(2))sin^(2)B=

VIKAS GUPTA (BLACK BOOK) ENGLISH-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. If (sinA)/(sinB)=(sqrt(3))/(2) and (cosA)/(cosB)=(sqrt(5))/(2) , 0 lt...

    Text Solution

    |

  2. Let P=(sin80^(@)sin65^(@) sin35^(@))/(sin20^(@)+sin50^(@)+sin110^(@))...

    Text Solution

    |

  3. The value of expression (1-cot23^(@))(1-cot22^(@)) is equal to :

    Text Solution

    |

  4. If tanA and tanB the roots of the quadratic equation, 4x^(2)-7x+1=0 th...

    Text Solution

    |

  5. A(1)A(2)A(3)………A(18) is a regular 18 sided polygon. B is an external p...

    Text Solution

    |

  6. If 10sin^4 alpha +15cos^4alpha=6 then the value of 9cosec^4 alpha + 8...

    Text Solution

    |

  7. The value of (1+tan\ (3pi)/8*tan\ pi/8)+(1+tan\ (5pi)/8*tan\ (3pi)/8)+...

    Text Solution

    |

  8. If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alph...

    Text Solution

    |

  9. Given that for a, b, c, d in R, If a sec(200^(@))-c tan (200^(@))=d a...

    Text Solution

    |

  10. The expression 2"cos"(pi)/(17)*"cos"(9pi)/(17)+"cos"(7pi)/(17)+"cos"(9...

    Text Solution

    |

  11. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  12. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  13. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  14. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  15. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  16. Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

    Text Solution

    |

  17. 3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)x+cos^(6)x)=.....

    Text Solution

    |

  18. Q. x=a satisfy the equation 3^(sin 2x+2 cos^2 x)+3^(1-sin 2x+2 sin^ 2x...

    Text Solution

    |

  19. If y=(sin theta+"cosec" theta)^(2) +(cos theta+sec theta)^(2), then m...

    Text Solution

    |

  20. If tan20^0+tan40^0+tan80^0-tan60^0= lambdasin40^0, find lambda.

    Text Solution

    |

  21. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |