Home
Class 12
MATHS
Let f(x)=sinx+2cos^2x, x in [pi/6,(2pi)/...

Let `f(x)=sinx+2cos^2x`, x `in [pi/6,(2pi)/3]`, then maximum value of f(x) is

A

1

B

`(3)/(2)`

C

2

D

`(5)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the function \( f(x) = \sin x + 2 \cos^2 x \) for \( x \) in the interval \( \left[\frac{\pi}{6}, \frac{2\pi}{3}\right] \), we can follow these steps: ### Step 1: Rewrite the function We know that \( \cos^2 x = 1 - \sin^2 x \). Therefore, we can rewrite \( f(x) \) as: \[ f(x) = \sin x + 2(1 - \sin^2 x) \] This simplifies to: \[ f(x) = \sin x + 2 - 2\sin^2 x \] Thus, we have: \[ f(x) = 2 - 2\sin^2 x + \sin x \] ### Step 2: Substitute \( \sin x \) with \( t \) Let \( t = \sin x \). The range of \( t \) for \( x \) in \( \left[\frac{\pi}{6}, \frac{2\pi}{3}\right] \) is: \[ t \in \left[\frac{1}{2}, 1\right] \] Now, we can express \( f(t) \) as: \[ f(t) = 2 - 2t^2 + t \] ### Step 3: Differentiate \( f(t) \) To find the maximum value, we need to differentiate \( f(t) \) with respect to \( t \): \[ f'(t) = -4t + 1 \] Setting the derivative equal to zero to find critical points: \[ -4t + 1 = 0 \implies t = \frac{1}{4} \] However, \( t = \frac{1}{4} \) is outside the range \( \left[\frac{1}{2}, 1\right] \). ### Step 4: Evaluate \( f(t) \) at the endpoints Since the critical point is not in the interval, we evaluate \( f(t) \) at the endpoints \( t = \frac{1}{2} \) and \( t = 1 \). 1. For \( t = \frac{1}{2} \): \[ f\left(\frac{1}{2}\right) = 2 - 2\left(\frac{1}{2}\right)^2 + \frac{1}{2} = 2 - 2 \cdot \frac{1}{4} + \frac{1}{2} = 2 - \frac{1}{2} + \frac{1}{2} = 2 \] 2. For \( t = 1 \): \[ f(1) = 2 - 2(1)^2 + 1 = 2 - 2 + 1 = 1 \] ### Step 5: Determine the maximum value Comparing the values: - \( f\left(\frac{1}{2}\right) = 2 \) - \( f(1) = 1 \) Thus, the maximum value of \( f(x) \) in the interval \( \left[\frac{\pi}{6}, \frac{2\pi}{3}\right] \) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=|x|+|sin x|, x in (-pi//2,pi//2). Then, f is

Let f(x)=2 cosec 2x + sec x+cosec x , then the minimum value of f(x) for x in (0,pi/2) is

Let f(x) = x cos^(-1)(-sin|x|) , x in (-pi/2,pi/2)

If f(x)=2sinx-x^(2) , then in x in [0, pi]

If f(x) = 2 sinx, g(x) = cos^(2) x , then the value of (f+g)((pi)/(3))

Let f(x)={(1-sin^3x)/(3cos^2x) if x pi/2 find a and b. .

Let f(x)=sinx-x" on"[0,pi//2] find local maximum and local minimum.

For x in ((-pi)/(2),(pi)/(2)) , the range of values of values of f(x)=2 +sinx+sin^(3)x+sin^(5)x…..oo

Let f(x)={x^2|(cos)pi/x|, x!=0 and 0,x=0,x in RR, then f is

Let f(x)=min{1,cos x,1-sinx}, -pi le x le pi , Then, f(x) is

VIKAS GUPTA (BLACK BOOK) ENGLISH-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. Let f(x)=sinx+2cos^2x, x in [pi/6,(2pi)/3], then maximum value of f(x)...

    Text Solution

    |

  2. Let P=(sin80^(@)sin65^(@) sin35^(@))/(sin20^(@)+sin50^(@)+sin110^(@))...

    Text Solution

    |

  3. The value of expression (1-cot23^(@))(1-cot22^(@)) is equal to :

    Text Solution

    |

  4. If tanA and tanB the roots of the quadratic equation, 4x^(2)-7x+1=0 th...

    Text Solution

    |

  5. A(1)A(2)A(3)………A(18) is a regular 18 sided polygon. B is an external p...

    Text Solution

    |

  6. If 10sin^4 alpha +15cos^4alpha=6 then the value of 9cosec^4 alpha + 8...

    Text Solution

    |

  7. The value of (1+tan\ (3pi)/8*tan\ pi/8)+(1+tan\ (5pi)/8*tan\ (3pi)/8)+...

    Text Solution

    |

  8. If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alph...

    Text Solution

    |

  9. Given that for a, b, c, d in R, If a sec(200^(@))-c tan (200^(@))=d a...

    Text Solution

    |

  10. The expression 2"cos"(pi)/(17)*"cos"(9pi)/(17)+"cos"(7pi)/(17)+"cos"(9...

    Text Solution

    |

  11. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  12. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  13. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  14. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  15. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  16. Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

    Text Solution

    |

  17. 3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)x+cos^(6)x)=.....

    Text Solution

    |

  18. Q. x=a satisfy the equation 3^(sin 2x+2 cos^2 x)+3^(1-sin 2x+2 sin^ 2x...

    Text Solution

    |

  19. If y=(sin theta+"cosec" theta)^(2) +(cos theta+sec theta)^(2), then m...

    Text Solution

    |

  20. If tan20^0+tan40^0+tan80^0-tan60^0= lambdasin40^0, find lambda.

    Text Solution

    |

  21. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |