Home
Class 12
MATHS
find the range of function f(x)=sin(x+(p...

find the range of function `f(x)=sin(x+(pi)/(6))+cos(x-(pi)/(6))`

A

`[-sqrt(2), sqrt(2)]`

B

`[-sqrt(2)(sqrt(3)+1), sqrt(2)(sqrt(3)+1)]`

C

`[-(sqrt(3)+1)/(sqrt(2)), (sqrt(3)+1)/(sqrt(2))]`

D

`[-(sqrt(3)-1)/(sqrt(2)), (sqrt(3)-1)/(sqrt(2))]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \sin\left(x + \frac{\pi}{6}\right) + \cos\left(x - \frac{\pi}{6}\right) \), we can use trigonometric identities and properties of sine and cosine functions. Here is a step-by-step solution: ### Step 1: Rewrite the function using trigonometric identities Using the angle addition and subtraction formulas, we can rewrite the function: \[ f(x) = \sin\left(x + \frac{\pi}{6}\right) + \cos\left(x - \frac{\pi}{6}\right) \] \[ = \sin x \cos\frac{\pi}{6} + \cos x \sin\frac{\pi}{6} + \cos x \cos\frac{\pi}{6} + \sin x \sin\frac{\pi}{6} \] ### Step 2: Substitute the values of \(\cos\frac{\pi}{6}\) and \(\sin\frac{\pi}{6}\) We know that: \[ \cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}, \quad \sin\frac{\pi}{6} = \frac{1}{2} \] Substituting these values into the equation gives: \[ f(x) = \sin x \cdot \frac{\sqrt{3}}{2} + \cos x \cdot \frac{1}{2} + \cos x \cdot \frac{\sqrt{3}}{2} + \sin x \cdot \frac{1}{2} \] \[ = \left(\frac{\sqrt{3}}{2} + \frac{1}{2}\right) \sin x + \left(\frac{\sqrt{3}}{2} + \frac{1}{2}\right) \cos x \] ### Step 3: Combine the terms Combining the coefficients: \[ f(x) = \left(\frac{\sqrt{3} + 1}{2}\right) \sin x + \left(\frac{\sqrt{3} + 1}{2}\right) \cos x \] This can be factored out: \[ f(x) = \frac{\sqrt{3} + 1}{2} (\sin x + \cos x) \] ### Step 4: Find the range of \(\sin x + \cos x\) The expression \(\sin x + \cos x\) can be rewritten using the identity: \[ \sin x + \cos x = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right) \] The range of \(\sin\) function is \([-1, 1]\), thus: \[ \sin x + \cos x \in [-\sqrt{2}, \sqrt{2}] \] ### Step 5: Scale the range Now, we scale the range by \(\frac{\sqrt{3} + 1}{2}\): \[ f(x) \in \left[-\frac{\sqrt{3} + 1}{2} \cdot \sqrt{2}, \frac{\sqrt{3} + 1}{2} \cdot \sqrt{2}\right] \] ### Step 6: Simplify the range Calculating the endpoints: \[ -\frac{\sqrt{3} + 1}{2} \cdot \sqrt{2} \quad \text{and} \quad \frac{\sqrt{3} + 1}{2} \cdot \sqrt{2} \] Thus, the range of the function \( f(x) \) is: \[ \left[-\frac{(\sqrt{3} + 1)\sqrt{2}}{2}, \frac{(\sqrt{3} + 1)\sqrt{2}}{2}\right] \] ### Final Answer The range of the function \( f(x) = \sin\left(x + \frac{\pi}{6}\right) + \cos\left(x - \frac{\pi}{6}\right) \) is: \[ \left[-\frac{(\sqrt{3} + 1)\sqrt{2}}{2}, \frac{(\sqrt{3} + 1)\sqrt{2}}{2}\right] \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

Period of the function f(x) = sin((pi x)/(2)) cos((pi x)/(2)) is

Find the range of the function f(x)=3 sin (sqrt((pi^(2))/(16)-x^(2))).

What is the range of the function f(x)=5-6sin(pix+1) ?

Find the range of the function f(x) =x Si x- (1)/(2) sin^(2) x for xin (0,(pi)/(2))

The period of the function f(x)=4sin^4((4x-3pi)/(6pi^2))+2cos((4x-3pi)/(3pi^2)) is

The range of the function f(x)=3|sin x|-2|cos x| is :

The period of the function f(x)=sin((2x+3)/(6pi)) , is

The maximum value of the function f(x)=sin(x+pi/6)+cos(x+pi/6) in the interval (0,pi/2) occurs at (a) pi/(12) (b) pi/6 (c) pi/4 (d) pi/3

Write the range of the function f(x)=sin[x],w h e r e(-pi)/4lt=xlt=pi/4 .

Range of function f(x)=|6sin^(-1)x-pi|+|6cos^(-1)x-pi| is (a) [0,9pi] (b) [0,3pi] (c) [pi,3pi] (d) [ pi,9pi]

VIKAS GUPTA (BLACK BOOK) ENGLISH-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. find the range of function f(x)=sin(x+(pi)/(6))+cos(x-(pi)/(6))

    Text Solution

    |

  2. Let P=(sin80^(@)sin65^(@) sin35^(@))/(sin20^(@)+sin50^(@)+sin110^(@))...

    Text Solution

    |

  3. The value of expression (1-cot23^(@))(1-cot22^(@)) is equal to :

    Text Solution

    |

  4. If tanA and tanB the roots of the quadratic equation, 4x^(2)-7x+1=0 th...

    Text Solution

    |

  5. A(1)A(2)A(3)………A(18) is a regular 18 sided polygon. B is an external p...

    Text Solution

    |

  6. If 10sin^4 alpha +15cos^4alpha=6 then the value of 9cosec^4 alpha + 8...

    Text Solution

    |

  7. The value of (1+tan\ (3pi)/8*tan\ pi/8)+(1+tan\ (5pi)/8*tan\ (3pi)/8)+...

    Text Solution

    |

  8. If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alph...

    Text Solution

    |

  9. Given that for a, b, c, d in R, If a sec(200^(@))-c tan (200^(@))=d a...

    Text Solution

    |

  10. The expression 2"cos"(pi)/(17)*"cos"(9pi)/(17)+"cos"(7pi)/(17)+"cos"(9...

    Text Solution

    |

  11. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  12. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  13. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  14. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  15. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  16. Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

    Text Solution

    |

  17. 3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)x+cos^(6)x)=.....

    Text Solution

    |

  18. Q. x=a satisfy the equation 3^(sin 2x+2 cos^2 x)+3^(1-sin 2x+2 sin^ 2x...

    Text Solution

    |

  19. If y=(sin theta+"cosec" theta)^(2) +(cos theta+sec theta)^(2), then m...

    Text Solution

    |

  20. If tan20^0+tan40^0+tan80^0-tan60^0= lambdasin40^0, find lambda.

    Text Solution

    |

  21. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |