Home
Class 12
MATHS
If A+B+C=180^(@), " then " (cosAcosC+co...

If `A+B+C=180^(@), " then " (cosAcosC+cos(A+B)cos(B+C))/(cosAsinC-sin(A+B)cos(B+C))` simplifies to :

A

`-cot C`

B

0

C

`tanC`

D

`cot C`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((\cos A \cos C + \cos(A+B) \cos(B+C)) / (\cos A \sin C - \sin(A+B) \cos(B+C))\) given that \(A + B + C = 180^\circ\), we can follow these steps: ### Step 1: Use the identity for angles Since \(A + B + C = 180^\circ\), we can express \(C\) as \(C = 180^\circ - (A + B)\). ### Step 2: Substitute \(C\) in the expression Now, substituting \(C\) in the expression: - \(\cos C = \cos(180^\circ - (A + B)) = -\cos(A + B)\) - \(\sin C = \sin(180^\circ - (A + B)) = \sin(A + B)\) ### Step 3: Rewrite the expression Now, we can rewrite the expression: \[ \frac{\cos A (-\cos(A + B)) + \cos(A + B) \cos(B + (180^\circ - (A + B)))}{\cos A \sin(A + B) - \sin(A + B) \cos(B + (180^\circ - (A + B)))} \] This simplifies to: \[ \frac{-\cos A \cos(A + B) + \cos(A + B)(-\cos A)}{\cos A \sin(A + B) - \sin(A + B)(-\cos A)} \] ### Step 4: Simplify the numerator The numerator simplifies to: \[ -\cos A \cos(A + B) - \cos A \cos(A + B) = -2\cos A \cos(A + B) \] ### Step 5: Simplify the denominator The denominator simplifies to: \[ \cos A \sin(A + B) + \sin(A + B) \cos A = 2\cos A \sin(A + B) \] ### Step 6: Combine the results Now, we have: \[ \frac{-2 \cos A \cos(A + B)}{2 \cos A \sin(A + B)} = -\frac{\cos(A + B)}{\sin(A + B)} \] ### Step 7: Final simplification This simplifies to: \[ -\cot(A + B) \] ### Step 8: Use the identity for \(A + B\) Since \(A + B = 180^\circ - C\), we can express: \[ -\cot(180^\circ - C) = \cot C \] ### Final Answer Thus, the expression simplifies to \(\cot C\). ---
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

If A+B+C=270^@ , then cos2A+cos2B+cos2C+4sinAsin B sinC=

If A+B+C=180^@ , then prove that cos^2 A + cos^2 B +cos^2 C=1-2cosA cosB cosC .

If A+B+C=180^0,\ then s e c A(cos B cos C-sin B sin C) is equal to:

If A+B+C=180 , prove that: sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)

Show that: sin(B-C)cos(A-D)+sin(C-A)cos(B-D)+sin(A-B)cos(C-D)=0

In any DeltaABC , prove that : (cos A)/(b cos C + c cos B) + (cos B)/(c cos A + a cos C) + (cos C)/(a cos B + b cos A) = (a^2 + b^2 + c^2)/(2abc)

In a Delta A B C , prove the following : (c-b\ cos A)/(b-c\ cos A)=(cosB)/(cos C)

If A+B+C=180^0 , prove that : cos^2 (A/2) + cos^2 (B/2) - cos^2 (C/2) = 2cos (A/2) cos (B/2) sin (C/2)

In a DeltaA B C , prove the following : a\ cos A+b\ cos B+c cos C=2bsinA sin\ Cdot

If A+B+C=(3pi)/(2) , then show that cos 2A+cos 2B+cos 2C=1-4 sin A sin B sin C .

VIKAS GUPTA (BLACK BOOK) ENGLISH-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. If A+B+C=180^(@), " then " (cosAcosC+cos(A+B)cos(B+C))/(cosAsinC-sin(...

    Text Solution

    |

  2. Let P=(sin80^(@)sin65^(@) sin35^(@))/(sin20^(@)+sin50^(@)+sin110^(@))...

    Text Solution

    |

  3. The value of expression (1-cot23^(@))(1-cot22^(@)) is equal to :

    Text Solution

    |

  4. If tanA and tanB the roots of the quadratic equation, 4x^(2)-7x+1=0 th...

    Text Solution

    |

  5. A(1)A(2)A(3)………A(18) is a regular 18 sided polygon. B is an external p...

    Text Solution

    |

  6. If 10sin^4 alpha +15cos^4alpha=6 then the value of 9cosec^4 alpha + 8...

    Text Solution

    |

  7. The value of (1+tan\ (3pi)/8*tan\ pi/8)+(1+tan\ (5pi)/8*tan\ (3pi)/8)+...

    Text Solution

    |

  8. If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alph...

    Text Solution

    |

  9. Given that for a, b, c, d in R, If a sec(200^(@))-c tan (200^(@))=d a...

    Text Solution

    |

  10. The expression 2"cos"(pi)/(17)*"cos"(9pi)/(17)+"cos"(7pi)/(17)+"cos"(9...

    Text Solution

    |

  11. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  12. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  13. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  14. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  15. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  16. Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

    Text Solution

    |

  17. 3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)x+cos^(6)x)=.....

    Text Solution

    |

  18. Q. x=a satisfy the equation 3^(sin 2x+2 cos^2 x)+3^(1-sin 2x+2 sin^ 2x...

    Text Solution

    |

  19. If y=(sin theta+"cosec" theta)^(2) +(cos theta+sec theta)^(2), then m...

    Text Solution

    |

  20. If tan20^0+tan40^0+tan80^0-tan60^0= lambdasin40^0, find lambda.

    Text Solution

    |

  21. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |