Home
Class 12
MATHS
The product ("cos"(x)/(2))*("cos"(x)/(4...

The product `("cos"(x)/(2))*("cos"(x)/(4))*("cos"(x)/(8))* * * * * * * * ("cos"(x)/(256))` is equal to :

A

`(sin x)/(128 "sin"(x)/(256))`

B

`(sin x)/(256 "sin"(x)/(256))`

C

`(sin x)/(128 "sin"(x)/(128))`

D

`(sin x)/(512 "sin"(x)/(512))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the product \[ P = \left(\frac{\cos x}{2}\right) \cdot \left(\frac{\cos x}{4}\right) \cdot \left(\frac{\cos x}{8}\right) \cdots \left(\frac{\cos x}{256}\right), \] we can follow these steps: ### Step 1: Rewrite the Product We can express the product in terms of a single cosine function. The product can be written as: \[ P = \frac{\cos x}{2} \cdot \frac{\cos x}{4} \cdot \frac{\cos x}{8} \cdots \frac{\cos x}{256} = \cos^n x \cdot \frac{1}{2 \cdot 4 \cdot 8 \cdots 256}, \] where \( n \) is the number of terms in the product. ### Step 2: Count the Number of Terms The terms are \( \frac{\cos x}{2}, \frac{\cos x}{4}, \frac{\cos x}{8}, \ldots, \frac{\cos x}{256} \). The denominators are powers of 2, specifically \( 2^1, 2^2, 2^3, \ldots, 2^8 \). Thus, there are 8 terms. ### Step 3: Calculate the Denominator The product of the denominators is: \[ 2 \cdot 4 \cdot 8 \cdots 256 = 2^1 \cdot 2^2 \cdot 2^3 \cdots 2^8 = 2^{1+2+3+\ldots+8}. \] The sum \( 1 + 2 + 3 + \ldots + 8 = \frac{8(8+1)}{2} = 36 \). Therefore, \[ 2^1 \cdot 2^2 \cdot 2^3 \cdots 2^8 = 2^{36}. \] ### Step 4: Express the Product Now we can express \( P \) as: \[ P = \frac{\cos^8 x}{2^{36}}. \] ### Step 5: Simplify the Expression We can write: \[ P = \frac{\cos^8 x}{2^{36}} = \frac{1}{2^{36}} \cdot \cos^8 x. \] ### Final Answer Thus, the product is: \[ P = \frac{\cos^8 x}{2^{36}}. \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

8*sin(x/8)*cos(x/2)*cos(x/4)*cos(x/8)=

The value of lim_(nrarroo)(cos.(x)/(2)cos.(x)/(4)cos.(x)/(8)………cos.(x)/(2^(n+1))) is equal to

lim_(x -0) (1 - cos 4x)/(x^(2)) is equal to

Evaluate lim_(ntooo) {cos((x)/(2))cos((x)/(4))cos((x)/(8))...cos((x)/(2^(n)))} .

lim_(xto0) (1)/(x^12){1-cos (x^2/2)-cos (x^4/4)+cos (x^2/2) cos (x^4/4)} is equal to

Evaluate lim_(xto0) (8)/(x^(8)){1-"cos"(x^(2))/(2)-"cos"(x^(2))/(4)+"cos"(x^(2))/(2)"cos"(x^(2))/(4)}.

If cos2x+2 cos x=1 , then (sin^(2)x)(2-cos^(2)x) is equal to

int_(0)^(pi//2) ( cos x - sin x )/( 2 + sin x cos x ) dx is equal to

Evaluate ("lim")_(n→oo){cos(x/2)cos(x/4)cos(x/8)... cos(x/(2^n))}

int(sin^(3)x)/((1+cos^(2)x)sqrt(1+cos^(2)x+cos^(4))x)dx is equal to

VIKAS GUPTA (BLACK BOOK) ENGLISH-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. The product ("cos"(x)/(2))*("cos"(x)/(4))*("cos"(x)/(8))* * * * * * *...

    Text Solution

    |

  2. Let P=(sin80^(@)sin65^(@) sin35^(@))/(sin20^(@)+sin50^(@)+sin110^(@))...

    Text Solution

    |

  3. The value of expression (1-cot23^(@))(1-cot22^(@)) is equal to :

    Text Solution

    |

  4. If tanA and tanB the roots of the quadratic equation, 4x^(2)-7x+1=0 th...

    Text Solution

    |

  5. A(1)A(2)A(3)………A(18) is a regular 18 sided polygon. B is an external p...

    Text Solution

    |

  6. If 10sin^4 alpha +15cos^4alpha=6 then the value of 9cosec^4 alpha + 8...

    Text Solution

    |

  7. The value of (1+tan\ (3pi)/8*tan\ pi/8)+(1+tan\ (5pi)/8*tan\ (3pi)/8)+...

    Text Solution

    |

  8. If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alph...

    Text Solution

    |

  9. Given that for a, b, c, d in R, If a sec(200^(@))-c tan (200^(@))=d a...

    Text Solution

    |

  10. The expression 2"cos"(pi)/(17)*"cos"(9pi)/(17)+"cos"(7pi)/(17)+"cos"(9...

    Text Solution

    |

  11. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  12. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  13. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  14. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  15. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  16. Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

    Text Solution

    |

  17. 3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)x+cos^(6)x)=.....

    Text Solution

    |

  18. Q. x=a satisfy the equation 3^(sin 2x+2 cos^2 x)+3^(1-sin 2x+2 sin^ 2x...

    Text Solution

    |

  19. If y=(sin theta+"cosec" theta)^(2) +(cos theta+sec theta)^(2), then m...

    Text Solution

    |

  20. If tan20^0+tan40^0+tan80^0-tan60^0= lambdasin40^0, find lambda.

    Text Solution

    |

  21. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |