Home
Class 12
MATHS
The value of the expression (sin7al...

The value of the expression
`(sin7alpha+6sin 5 alpha+17sin3alpha+12sin alpha)/(sin6alpha+5sin 4alpha+12 sin 2 alpha)`, where `alpha=(pi)/(5)` is equal to :

A

`(sqrt(5)-1)/(4)`

B

` (sqrt(5)+1)/(4)`

C

`(sqrt(5)+1)/(2)`

D

`(sqrt(5)-1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{\sin(7\alpha) + 6\sin(5\alpha) + 17\sin(3\alpha) + 12\sin(\alpha)}{\sin(6\alpha) + 5\sin(4\alpha) + 12\sin(2\alpha)} \] where \(\alpha = \frac{\pi}{5}\), we will follow these steps: ### Step 1: Substitute \(\alpha\) First, substitute \(\alpha\) with \(\frac{\pi}{5}\): \[ \sin(7\alpha) = \sin\left(7 \cdot \frac{\pi}{5}\right) = \sin\left(\frac{7\pi}{5}\right) \] \[ \sin(5\alpha) = \sin\left(5 \cdot \frac{\pi}{5}\right) = \sin(\pi) = 0 \] \[ \sin(3\alpha) = \sin\left(3 \cdot \frac{\pi}{5}\right) \] \[ \sin(\alpha) = \sin\left(\frac{\pi}{5}\right) \] ### Step 2: Simplify the Numerator The numerator simplifies to: \[ \sin\left(\frac{7\pi}{5}\right) + 6(0) + 17\sin\left(\frac{3\pi}{5}\right) + 12\sin\left(\frac{\pi}{5}\right) \] Using the property \(\sin\left(\frac{7\pi}{5}\right) = -\sin\left(\frac{2\pi}{5}\right)\): \[ -\sin\left(\frac{2\pi}{5}\right) + 17\sin\left(\frac{3\pi}{5}\right) + 12\sin\left(\frac{\pi}{5}\right) \] ### Step 3: Simplify the Denominator Now, simplify the denominator: \[ \sin(6\alpha) = \sin\left(6 \cdot \frac{\pi}{5}\right) = \sin\left(\frac{6\pi}{5}\right) \] \[ \sin(4\alpha) = \sin\left(4 \cdot \frac{\pi}{5}\right) \] \[ \sin(2\alpha) = \sin\left(2 \cdot \frac{\pi}{5}\right) \] The denominator becomes: \[ \sin\left(\frac{6\pi}{5}\right) + 5\sin\left(\frac{4\pi}{5}\right) + 12\sin\left(\frac{2\pi}{5}\right) \] Using the property \(\sin\left(\frac{6\pi}{5}\right) = -\sin\left(\frac{\pi}{5}\right)\): \[ -\sin\left(\frac{\pi}{5}\right) + 5\sin\left(\frac{4\pi}{5}\right) + 12\sin\left(\frac{2\pi}{5}\right) \] ### Step 4: Substitute Values Now we can substitute the known values: 1. \(\sin\left(\frac{\pi}{5}\right)\) 2. \(\sin\left(\frac{2\pi}{5}\right)\) 3. \(\sin\left(\frac{3\pi}{5}\right) = \sin\left(\pi - \frac{2\pi}{5}\right) = \sin\left(\frac{2\pi}{5}\right)\) 4. \(\sin\left(\frac{4\pi}{5}\right) = \sin\left(\pi - \frac{\pi}{5}\right) = \sin\left(\frac{\pi}{5}\right)\) ### Step 5: Final Expression After substituting these values, we can simplify the expression further. The numerator becomes: \[ -\sin\left(\frac{2\pi}{5}\right) + 17\sin\left(\frac{2\pi}{5}\right) + 12\sin\left(\frac{\pi}{5}\right) = 16\sin\left(\frac{2\pi}{5}\right) + 12\sin\left(\frac{\pi}{5}\right) \] The denominator simplifies to: \[ -\sin\left(\frac{\pi}{5}\right) + 5\sin\left(\frac{\pi}{5}\right) + 12\sin\left(\frac{2\pi}{5}\right) = 4\sin\left(\frac{\pi}{5}\right) + 12\sin\left(\frac{2\pi}{5}\right) \] ### Step 6: Cancel Common Terms Now we can cancel out the common terms in the numerator and denominator: \[ \frac{16\sin\left(\frac{2\pi}{5}\right) + 12\sin\left(\frac{\pi}{5}\right)}{4\sin\left(\frac{\pi}{5}\right) + 12\sin\left(\frac{2\pi}{5}\right)} \] ### Step 7: Final Calculation This will reduce to a simpler form, and substituting the known values of \(\sin\left(\frac{\pi}{5}\right)\) and \(\sin\left(\frac{2\pi}{5}\right)\) will yield the final answer. ### Final Answer After performing the calculations, we find that the value of the expression is: \[ \frac{\sqrt{5}+1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

If sin 3 alpha =4 sin alpha sin (x+alpha ) sin(x-alpha ) , then

If tan theta=(sin alpha- cos alpha)/(sin alpha+cos alpha) , then:

Prove that sinalpha*sin(60-alpha)sin(60+alpha) = 1/4*sin3alpha

If (2sinalpha)/({1+cos alpha+sin alpha})=y, then ({1-cos alpha+sin alpha})/(1+sin alpha)=

The value of expression (tan alpha+sin alpha)/(2"cos"^(2)(alpha)/(2)) for alpha=(pi)/(4) is :

If sin(x +3alpha)=3 sin (alpha-x) , then

The value of (sin5alpha-sin3alpha)/(cos5alpha+2cos4alpha+cos3alpha) is

Show that 4 sin alpha.sin (alpha + pi/3) sin (alpha + 2pi/3) = sin 3alpha

If 0 < alpha < pi/6 and sin alpha + cos alpha =sqrt(7 )/2, then tan alpha/2 is equal to

(cos ^(3) alpha - cos 3 alpha )/( cos alpha ) + (sin ^(3)alpha + sin 3 alpha )/( sin alpha ) = 3.

VIKAS GUPTA (BLACK BOOK) ENGLISH-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. The value of the expression (sin7alpha+6sin 5 alpha+17sin3alpha+1...

    Text Solution

    |

  2. Let P=(sin80^(@)sin65^(@) sin35^(@))/(sin20^(@)+sin50^(@)+sin110^(@))...

    Text Solution

    |

  3. The value of expression (1-cot23^(@))(1-cot22^(@)) is equal to :

    Text Solution

    |

  4. If tanA and tanB the roots of the quadratic equation, 4x^(2)-7x+1=0 th...

    Text Solution

    |

  5. A(1)A(2)A(3)………A(18) is a regular 18 sided polygon. B is an external p...

    Text Solution

    |

  6. If 10sin^4 alpha +15cos^4alpha=6 then the value of 9cosec^4 alpha + 8...

    Text Solution

    |

  7. The value of (1+tan\ (3pi)/8*tan\ pi/8)+(1+tan\ (5pi)/8*tan\ (3pi)/8)+...

    Text Solution

    |

  8. If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alph...

    Text Solution

    |

  9. Given that for a, b, c, d in R, If a sec(200^(@))-c tan (200^(@))=d a...

    Text Solution

    |

  10. The expression 2"cos"(pi)/(17)*"cos"(9pi)/(17)+"cos"(7pi)/(17)+"cos"(9...

    Text Solution

    |

  11. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  12. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  13. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  14. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  15. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  16. Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

    Text Solution

    |

  17. 3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)x+cos^(6)x)=.....

    Text Solution

    |

  18. Q. x=a satisfy the equation 3^(sin 2x+2 cos^2 x)+3^(1-sin 2x+2 sin^ 2x...

    Text Solution

    |

  19. If y=(sin theta+"cosec" theta)^(2) +(cos theta+sec theta)^(2), then m...

    Text Solution

    |

  20. If tan20^0+tan40^0+tan80^0-tan60^0= lambdasin40^0, find lambda.

    Text Solution

    |

  21. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |