Home
Class 12
MATHS
The minimum value of (sintheta+c o s e ...

The minimum value of `(sintheta+c o s e ctheta)^2+(costheta+sectheta)^2=`

A

7

B

8

C

9

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \((\sin \theta + \csc \theta)^2 + (\cos \theta + \sec \theta)^2\), we can follow these steps: ### Step 1: Rewrite the Expression We start by rewriting the expression using the definitions of cosecant and secant: \[ \csc \theta = \frac{1}{\sin \theta}, \quad \sec \theta = \frac{1}{\cos \theta} \] Thus, we can express the original equation as: \[ (\sin \theta + \frac{1}{\sin \theta})^2 + (\cos \theta + \frac{1}{\cos \theta})^2 \] ### Step 2: Expand Each Square Next, we expand both squares: \[ (\sin \theta + \frac{1}{\sin \theta})^2 = \sin^2 \theta + 2 + \frac{1}{\sin^2 \theta} \] \[ (\cos \theta + \frac{1}{\cos \theta})^2 = \cos^2 \theta + 2 + \frac{1}{\cos^2 \theta} \] Combining these, we have: \[ \sin^2 \theta + \cos^2 \theta + 4 + \frac{1}{\sin^2 \theta} + \frac{1}{\cos^2 \theta} \] ### Step 3: Use the Pythagorean Identity Using the Pythagorean identity \(\sin^2 \theta + \cos^2 \theta = 1\), we can simplify the expression: \[ 1 + 4 + \frac{1}{\sin^2 \theta} + \frac{1}{\cos^2 \theta} = 5 + \frac{1}{\sin^2 \theta} + \frac{1}{\cos^2 \theta} \] ### Step 4: Combine the Terms We can combine the terms involving \(\sin^2 \theta\) and \(\cos^2 \theta\): \[ \frac{1}{\sin^2 \theta} + \frac{1}{\cos^2 \theta} = \frac{\cos^2 \theta + \sin^2 \theta}{\sin^2 \theta \cos^2 \theta} = \frac{1}{\sin^2 \theta \cos^2 \theta} \] Thus, we can rewrite our expression as: \[ 5 + \frac{1}{\sin^2 \theta \cos^2 \theta} \] ### Step 5: Find the Minimum Value To minimize the expression \(5 + \frac{1}{\sin^2 \theta \cos^2 \theta}\), we need to maximize \(\sin^2 \theta \cos^2 \theta\). The maximum value of \(\sin^2 \theta \cos^2 \theta\) occurs when \(\sin^2 \theta = \cos^2 \theta = \frac{1}{2}\): \[ \sin^2 \theta \cos^2 \theta = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \] Thus, we have: \[ \frac{1}{\sin^2 \theta \cos^2 \theta} = \frac{1}{\frac{1}{4}} = 4 \] ### Step 6: Final Calculation Substituting this back into our expression gives: \[ 5 + 4 = 9 \] ### Conclusion Therefore, the minimum value of \((\sin \theta + \csc \theta)^2 + (\cos \theta + \sec \theta)^2\) is: \[ \boxed{9} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

Prove that (sintheta+cosectheta)^2+(costheta+sectheta)^2ge9 .

The minimum value of (1)/(3sintheta-4costheta+7), is

Prove the following identities: (sintheta+cos e ctheta)^2+(costheta+sectheta)^2=7+tan^2theta+cot^2theta

Prove the following identities: (sintheta+cos e ctheta)^2+(costheta+sectheta)^2=7+tan^2theta+cot^2theta

If cottheta=(12)/(5) ,then find the value of sintheta*sectheta+costheta*"cosec"theta .

(i) If tantheta=(a)/(b) ,then find the value of (2sintheta-3costheta)/(2sintheta+3costheta)

If cos e c\ theta=(13)/(12) , find the value of (2sintheta-3\ cos\ theta)/(4sintheta-9costheta)

Prove the following identities: (sintheta+sectheta)^2+(costheta+cos e ctheta)^2=(1+secthetacos e ctheta)^2

Prove the following identities: (sintheta-sectheta)^2+(costheta-cos e ctheta)^2=(1-secthetacos e ctheta)^2

If sectheta=5/4 , find the value of (sintheta-2costheta)/(tantheta-cottheta)

VIKAS GUPTA (BLACK BOOK) ENGLISH-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. The minimum value of (sintheta+c o s e ctheta)^2+(costheta+sectheta)^...

    Text Solution

    |

  2. Let P=(sin80^(@)sin65^(@) sin35^(@))/(sin20^(@)+sin50^(@)+sin110^(@))...

    Text Solution

    |

  3. The value of expression (1-cot23^(@))(1-cot22^(@)) is equal to :

    Text Solution

    |

  4. If tanA and tanB the roots of the quadratic equation, 4x^(2)-7x+1=0 th...

    Text Solution

    |

  5. A(1)A(2)A(3)………A(18) is a regular 18 sided polygon. B is an external p...

    Text Solution

    |

  6. If 10sin^4 alpha +15cos^4alpha=6 then the value of 9cosec^4 alpha + 8...

    Text Solution

    |

  7. The value of (1+tan\ (3pi)/8*tan\ pi/8)+(1+tan\ (5pi)/8*tan\ (3pi)/8)+...

    Text Solution

    |

  8. If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alph...

    Text Solution

    |

  9. Given that for a, b, c, d in R, If a sec(200^(@))-c tan (200^(@))=d a...

    Text Solution

    |

  10. The expression 2"cos"(pi)/(17)*"cos"(9pi)/(17)+"cos"(7pi)/(17)+"cos"(9...

    Text Solution

    |

  11. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  12. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  13. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  14. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  15. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  16. Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

    Text Solution

    |

  17. 3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)x+cos^(6)x)=.....

    Text Solution

    |

  18. Q. x=a satisfy the equation 3^(sin 2x+2 cos^2 x)+3^(1-sin 2x+2 sin^ 2x...

    Text Solution

    |

  19. If y=(sin theta+"cosec" theta)^(2) +(cos theta+sec theta)^(2), then m...

    Text Solution

    |

  20. If tan20^0+tan40^0+tan80^0-tan60^0= lambdasin40^0, find lambda.

    Text Solution

    |

  21. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |