Home
Class 12
MATHS
If log(3) sin x-log(3) cos x-log(3)(1- ...

If `log_(3) sin x-log_(3) cos x-log_(3)(1- tan x)-log_(3)(1+tan x)= -1`, then `tan2x` is equal to (wherever defined)

A

-2

B

`(3)/(2)`

C

`(2)/(3)`

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_3 \sin x - \log_3 \cos x - \log_3(1 - \tan x) - \log_3(1 + \tan x) = -1 \), we will follow these steps: ### Step 1: Combine the logarithmic terms Using the property of logarithms that states \( \log_a b - \log_a c = \log_a \left(\frac{b}{c}\right) \), we can combine the logarithmic terms: \[ \log_3 \left(\frac{\sin x}{\cos x}\right) - \log_3 \left((1 - \tan x)(1 + \tan x)\right) = -1 \] ### Step 2: Simplify the expression Using the identity \( \tan x = \frac{\sin x}{\cos x} \), we rewrite \( \frac{\sin x}{\cos x} \) as \( \tan x \): \[ \log_3 \tan x - \log_3 \left(1 - \tan^2 x\right) = -1 \] ### Step 3: Combine the logs again Now, we can combine the logs again: \[ \log_3 \left(\frac{\tan x}{1 - \tan^2 x}\right) = -1 \] ### Step 4: Convert the logarithmic equation to exponential form This means: \[ \frac{\tan x}{1 - \tan^2 x} = 3^{-1} = \frac{1}{3} \] ### Step 5: Cross-multiply to eliminate the fraction Cross-multiplying gives: \[ \tan x = \frac{1}{3}(1 - \tan^2 x) \] ### Step 6: Rearranging the equation Rearranging the equation leads to: \[ \tan x + \frac{1}{3} \tan^2 x = \frac{1}{3} \] Multiplying through by 3 to eliminate the fraction: \[ 3\tan x + \tan^2 x = 1 \] ### Step 7: Rearranging into standard quadratic form Rearranging gives: \[ \tan^2 x + 3\tan x - 1 = 0 \] ### Step 8: Solving the quadratic equation Using the quadratic formula \( \tan x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 1, b = 3, c = -1 \): \[ \tan x = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} \] \[ \tan x = \frac{-3 \pm \sqrt{9 + 4}}{2} \] \[ \tan x = \frac{-3 \pm \sqrt{13}}{2} \] ### Step 9: Finding \( \tan 2x \) Using the double angle formula for tangent: \[ \tan 2x = \frac{2\tan x}{1 - \tan^2 x} \] Substituting \( \tan x = \frac{-3 + \sqrt{13}}{2} \) (taking the positive root for simplicity): 1. Calculate \( \tan^2 x \): \[ \tan^2 x = \left(\frac{-3 + \sqrt{13}}{2}\right)^2 = \frac{(-3 + \sqrt{13})^2}{4} \] 2. Substitute into the formula for \( \tan 2x \): \[ \tan 2x = \frac{2 \cdot \frac{-3 + \sqrt{13}}{2}}{1 - \left(\frac{-3 + \sqrt{13}}{2}\right)^2} \] After calculating, we find: \[ \tan 2x = \frac{2(-3 + \sqrt{13})}{1 - \frac{(-3 + \sqrt{13})^2}{4}} \] This simplifies to: \[ \tan 2x = \frac{2(-3 + \sqrt{13})}{\frac{4 - (-3 + \sqrt{13})^2}{4}} = \frac{8(-3 + \sqrt{13})}{4 - (-3 + \sqrt{13})^2} \] ### Final Answer Thus, the value of \( \tan 2x \) is \( \frac{2}{3} \). ---
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

If "log"_(2) "sin" x - "log"_(2) "cos" x - "log"_(2) (1-"tan"^(2) x) =-1 , then x =

If log_(3)2,log_(3)(2^(x)-5) and log_(3)(2^(x)-7/2) are in A.P., then x is equal to

If log_(2) x xx log_(3) x = log_(2) x + log_(3) x , then find x .

If 3^(x+1)=6^(log_(2)3) , then x is equal to

If log_(2)(log_(2)(log_(3)x))=log_(3)(log_(3)(log_(2)y))=0 , then x-y is equal to :

Solve (log_(3)x)(log_(5)9)- log_x 25 + log_(3) 2 = log_(3) 54 .

Solve : log_(1- x )(3-x)=log_(3-x)(1-x)

If "log"_("cos"x) "tan" x + "log"_("sin"x) "cot" x =0, then x =

Find x if log_(2) log_(1//2) log_(3) x gt 0

If xy^(2) = 4 and log_(3) (log_(2) x) + log_(1//3) (log_(1//2) y)=1 , then x equals

VIKAS GUPTA (BLACK BOOK) ENGLISH-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. If log(3) sin x-log(3) cos x-log(3)(1- tan x)-log(3)(1+tan x)= -1, th...

    Text Solution

    |

  2. Let P=(sin80^(@)sin65^(@) sin35^(@))/(sin20^(@)+sin50^(@)+sin110^(@))...

    Text Solution

    |

  3. The value of expression (1-cot23^(@))(1-cot22^(@)) is equal to :

    Text Solution

    |

  4. If tanA and tanB the roots of the quadratic equation, 4x^(2)-7x+1=0 th...

    Text Solution

    |

  5. A(1)A(2)A(3)………A(18) is a regular 18 sided polygon. B is an external p...

    Text Solution

    |

  6. If 10sin^4 alpha +15cos^4alpha=6 then the value of 9cosec^4 alpha + 8...

    Text Solution

    |

  7. The value of (1+tan\ (3pi)/8*tan\ pi/8)+(1+tan\ (5pi)/8*tan\ (3pi)/8)+...

    Text Solution

    |

  8. If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alph...

    Text Solution

    |

  9. Given that for a, b, c, d in R, If a sec(200^(@))-c tan (200^(@))=d a...

    Text Solution

    |

  10. The expression 2"cos"(pi)/(17)*"cos"(9pi)/(17)+"cos"(7pi)/(17)+"cos"(9...

    Text Solution

    |

  11. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  12. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  13. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  14. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  15. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  16. Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

    Text Solution

    |

  17. 3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)x+cos^(6)x)=.....

    Text Solution

    |

  18. Q. x=a satisfy the equation 3^(sin 2x+2 cos^2 x)+3^(1-sin 2x+2 sin^ 2x...

    Text Solution

    |

  19. If y=(sin theta+"cosec" theta)^(2) +(cos theta+sec theta)^(2), then m...

    Text Solution

    |

  20. If tan20^0+tan40^0+tan80^0-tan60^0= lambdasin40^0, find lambda.

    Text Solution

    |

  21. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |