Home
Class 12
MATHS
x^2 +y^2= 9 & 4a^2 + 9b^2= 16, then maxi...

`x^2 +y^2= 9 & 4a^2 + 9b^2= 16`, then maximum value of `4a^2 x^2+ 9b^2y^2- 12abxy` is -

A

81

B

100

C

121

D

144

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the expression \( 4a^2 x^2 + 9b^2 y^2 - 12abxy \) given the constraints \( x^2 + y^2 = 9 \) and \( 4a^2 + 9b^2 = 16 \), we can follow these steps: ### Step 1: Parametrize the variables Given the equation \( x^2 + y^2 = 9 \), we can parametrize \( x \) and \( y \) as: \[ x = 3 \cos \theta, \quad y = 3 \sin \theta \] ### Step 2: Parametrize \( a \) and \( b \) From the equation \( 4a^2 + 9b^2 = 16 \), we can parametrize \( a \) and \( b \) as: \[ a = 2 \cos \phi, \quad b = \frac{4}{3} \sin \phi \] ### Step 3: Substitute into the expression Now, substitute \( x \), \( y \), \( a \), and \( b \) into the expression: \[ 4a^2 x^2 + 9b^2 y^2 - 12abxy \] Substituting the values: \[ = 4(2 \cos \phi)^2 (3 \cos \theta)^2 + 9\left(\frac{4}{3} \sin \phi\right)^2 (3 \sin \theta)^2 - 12(2 \cos \phi)\left(\frac{4}{3} \sin \phi\right)(3 \cos \theta)(3 \sin \theta) \] ### Step 4: Simplify the expression Calculating each term: 1. \( 4(2 \cos \phi)^2 (3 \cos \theta)^2 = 4 \cdot 4 \cos^2 \phi \cdot 9 \cos^2 \theta = 144 \cos^2 \phi \cos^2 \theta \) 2. \( 9\left(\frac{4}{3} \sin \phi\right)^2 (3 \sin \theta)^2 = 9 \cdot \frac{16}{9} \sin^2 \phi \cdot 9 \sin^2 \theta = 144 \sin^2 \phi \sin^2 \theta \) 3. \( -12(2 \cos \phi)\left(\frac{4}{3} \sin \phi\right)(3 \cos \theta)(3 \sin \theta) = -12 \cdot 2 \cdot \frac{4}{3} \cdot 9 \cos \phi \sin \phi \cos \theta \sin \theta = -96 \cos \phi \sin \phi \cos \theta \sin \theta \) Combining these: \[ = 144 (\cos^2 \phi \cos^2 \theta + \sin^2 \phi \sin^2 \theta - \frac{2}{3} \cos \phi \sin \phi \cos \theta \sin \theta) \] ### Step 5: Use trigonometric identities Using the identity \( \cos^2 \theta + \sin^2 \theta = 1 \): \[ = 144 \left( \frac{1}{2} + \frac{1}{2} \sin 2\phi \sin 2\theta \right) \] ### Step 6: Find the maximum value The maximum value of \( \sin 2\phi \sin 2\theta \) is 1, thus: \[ = 144 \left( \frac{1}{2} + \frac{1}{2} \cdot 1 \right) = 144 \cdot 1 = 144 \] ### Final Answer The maximum value of the expression \( 4a^2 x^2 + 9b^2 y^2 - 12abxy \) is: \[ \boxed{144} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

If 2x+3y=8 and x y=2 , find the value of 4x^2+9y^2

If 3x+2y=12 and x y=6, find the value of 9x^2+4y^2

If 2x-3y=5 , what is the value of 4x^(2)-12xy+9y^(2) ?

If 3x+2y=12 and x y=6 , find the value of 9x^2+4y^2

If 3x + 4y= 16 and xy= 4 , find the value of 9x^(2) + 16y^(2)

Suppose x, y in (-2, 2) and xy=-1 , then the minimum value of a=4/(4-x^2)-9/(9-y^2) is

If x^(2)+y^(2)=4 and a^(2)+b^(2)=9 then

Evaluate : b^(2)y - 9b^(2)y + 2b^(2)y - 5b^(2)y

If 3x+2y=12\ a n d\ x y=6, find the value of 9x^2+4y^2dot

Suppose xa n dy are real numbers and that x^2+9y^2-4x+6y+4=0 . Then the maximum value of ((4x-9y))/2 is__________

VIKAS GUPTA (BLACK BOOK) ENGLISH-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. x^2 +y^2= 9 & 4a^2 + 9b^2= 16, then maximum value of 4a^2 x^2+ 9b^2y^2...

    Text Solution

    |

  2. Let P=(sin80^(@)sin65^(@) sin35^(@))/(sin20^(@)+sin50^(@)+sin110^(@))...

    Text Solution

    |

  3. The value of expression (1-cot23^(@))(1-cot22^(@)) is equal to :

    Text Solution

    |

  4. If tanA and tanB the roots of the quadratic equation, 4x^(2)-7x+1=0 th...

    Text Solution

    |

  5. A(1)A(2)A(3)………A(18) is a regular 18 sided polygon. B is an external p...

    Text Solution

    |

  6. If 10sin^4 alpha +15cos^4alpha=6 then the value of 9cosec^4 alpha + 8...

    Text Solution

    |

  7. The value of (1+tan\ (3pi)/8*tan\ pi/8)+(1+tan\ (5pi)/8*tan\ (3pi)/8)+...

    Text Solution

    |

  8. If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alph...

    Text Solution

    |

  9. Given that for a, b, c, d in R, If a sec(200^(@))-c tan (200^(@))=d a...

    Text Solution

    |

  10. The expression 2"cos"(pi)/(17)*"cos"(9pi)/(17)+"cos"(7pi)/(17)+"cos"(9...

    Text Solution

    |

  11. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  12. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  13. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  14. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  15. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  16. Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

    Text Solution

    |

  17. 3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)x+cos^(6)x)=.....

    Text Solution

    |

  18. Q. x=a satisfy the equation 3^(sin 2x+2 cos^2 x)+3^(1-sin 2x+2 sin^ 2x...

    Text Solution

    |

  19. If y=(sin theta+"cosec" theta)^(2) +(cos theta+sec theta)^(2), then m...

    Text Solution

    |

  20. If tan20^0+tan40^0+tan80^0-tan60^0= lambdasin40^0, find lambda.

    Text Solution

    |

  21. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |