Home
Class 12
MATHS
If A=sqrt(sin2-sin sqrt(3)), B=sqrt(cos...

If `A=sqrt(sin2-sin sqrt(3)), B=sqrt(cos2-cos sqrt(3))`, then which of the following statement is true ?

A

A and B both are real numbers and `A gt B`

B

A and B both are real numbers and `A lt B`

C

Exactly one of A and B is not real number

D

Both A and B are not real numbers

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expressions for \( A \) and \( B \) given by: \[ A = \sqrt{\sin(2) - \sin(\sqrt{3})} \] \[ B = \sqrt{\cos(2) - \cos(\sqrt{3})} \] We will determine whether \( A \) and \( B \) are real numbers by checking the conditions under which the expressions inside the square roots are non-negative. ### Step 1: Analyze \( A \) We start with \( A \): \[ A = \sqrt{\sin(2) - \sin(\sqrt{3})} \] For \( A \) to be real, the expression inside the square root must be non-negative: \[ \sin(2) - \sin(\sqrt{3}) \geq 0 \] This implies: \[ \sin(2) \geq \sin(\sqrt{3}) \] ### Step 2: Evaluate \( \sin(2) \) and \( \sin(\sqrt{3}) \) Now we need to find the values of \( \sin(2) \) and \( \sin(\sqrt{3}) \): - The value of \( \sin(2) \) can be approximated using a calculator: \[ \sin(2) \approx 0.909 \] - The value of \( \sqrt{3} \) is approximately \( 1.732 \): \[ \sin(\sqrt{3}) = \sin(1.732) \approx 0.987 \] ### Step 3: Compare \( \sin(2) \) and \( \sin(\sqrt{3}) \) Now we compare: \[ 0.909 < 0.987 \] Thus, \[ \sin(2) < \sin(\sqrt{3}) \] This means: \[ \sin(2) - \sin(\sqrt{3}) < 0 \] Therefore, \( A \) is not a real number. ### Step 4: Analyze \( B \) Next, we analyze \( B \): \[ B = \sqrt{\cos(2) - \cos(\sqrt{3})} \] For \( B \) to be real, we need: \[ \cos(2) - \cos(\sqrt{3}) \geq 0 \] This implies: \[ \cos(2) \geq \cos(\sqrt{3}) \] ### Step 5: Evaluate \( \cos(2) \) and \( \cos(\sqrt{3}) \) Now we find the values of \( \cos(2) \) and \( \cos(\sqrt{3}) \): - The value of \( \cos(2) \) can also be approximated: \[ \cos(2) \approx -0.416 \] - For \( \cos(\sqrt{3}) \): \[ \cos(\sqrt{3}) = \cos(1.732) \approx -0.187 \] ### Step 6: Compare \( \cos(2) \) and \( \cos(\sqrt{3}) \) Now we compare: \[ -0.416 < -0.187 \] Thus, \[ \cos(2) < \cos(\sqrt{3}) \] This means: \[ \cos(2) - \cos(\sqrt{3}) < 0 \] Therefore, \( B \) is also not a real number. ### Conclusion Since both \( A \) and \( B \) are not real numbers, the correct option is: **Option 4: Both \( A \) and \( B \) are not real numbers.**
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

Solve sin x + sqrt(3) cos x = sqrt(2)

sqrt(sin 2x) cos 2x

(2+sqrt(3)) sin theta +2cos theta lies between

cos theta+sqrt(3)sin theta=2

If 0ltAltBltpi, sin A-sinB=(1)/(sqrt2) and cos A-cos B=sqrt((3)/(2)) , then the value of A+B is equal to

4(sin2 4^0+cos6^0)=sqrt(3)+sqrt(15)

If 2cos2A=sqrt(3) and A is acute, find : sin 3A

If A(3/sqrt(2), sqrt(2)) , B(-3/sqrt(2), sqrt(2)), C(-3/sqrt(2), -sqrt(2)) and D(3 cos theta , 2 sin theta) are four points . If the area of the quadrilateral ABCD is maximum where theta in (3 pi/2, 2 pi) then (a) maximum area is 10 sq units (b) theta = 7 pi/4 (c) theta = 2 pi- sin^(-1) 3/ sqrt(85) (d) maximum area is 12 sq units

Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .

If 0ltAltB ltpi, sin A+sinB=sqrt((3)/(2)) and cos A+cosB=(1)/(sqrt2), then A =

VIKAS GUPTA (BLACK BOOK) ENGLISH-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. If A=sqrt(sin2-sin sqrt(3)), B=sqrt(cos2-cos sqrt(3)), then which of ...

    Text Solution

    |

  2. Let P=(sin80^(@)sin65^(@) sin35^(@))/(sin20^(@)+sin50^(@)+sin110^(@))...

    Text Solution

    |

  3. The value of expression (1-cot23^(@))(1-cot22^(@)) is equal to :

    Text Solution

    |

  4. If tanA and tanB the roots of the quadratic equation, 4x^(2)-7x+1=0 th...

    Text Solution

    |

  5. A(1)A(2)A(3)………A(18) is a regular 18 sided polygon. B is an external p...

    Text Solution

    |

  6. If 10sin^4 alpha +15cos^4alpha=6 then the value of 9cosec^4 alpha + 8...

    Text Solution

    |

  7. The value of (1+tan\ (3pi)/8*tan\ pi/8)+(1+tan\ (5pi)/8*tan\ (3pi)/8)+...

    Text Solution

    |

  8. If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alph...

    Text Solution

    |

  9. Given that for a, b, c, d in R, If a sec(200^(@))-c tan (200^(@))=d a...

    Text Solution

    |

  10. The expression 2"cos"(pi)/(17)*"cos"(9pi)/(17)+"cos"(7pi)/(17)+"cos"(9...

    Text Solution

    |

  11. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  12. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  13. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  14. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  15. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  16. Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

    Text Solution

    |

  17. 3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)x+cos^(6)x)=.....

    Text Solution

    |

  18. Q. x=a satisfy the equation 3^(sin 2x+2 cos^2 x)+3^(1-sin 2x+2 sin^ 2x...

    Text Solution

    |

  19. If y=(sin theta+"cosec" theta)^(2) +(cos theta+sec theta)^(2), then m...

    Text Solution

    |

  20. If tan20^0+tan40^0+tan80^0-tan60^0= lambdasin40^0, find lambda.

    Text Solution

    |

  21. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |